On Wed, Oct 23, 2019 at 11:11 AM Feng Xue OS <f...@os.amperecomputing.com> wrote: > > Patch attached.
+ /* For PHI node that is not in loop header, its source operands should + be defined inside the loop, which are seen as loop variant. */ + if (def_bb != loop->header || !skip_head) + return false; so if we have for (;;) { if (x) a = ..; else a = ...; if (cond-to-split-on dependent on a) ... } the above is too restrictive in case 'x' is semi-invariant as well, correct? + /* A new value comes from outside of loop. */ + if (!bb || !flow_bb_inside_loop_p (loop, bb)) + return false; but that means starting from the second iteration the value is invariant. + /* Don't consider redefinitions in excluded basic blocks. */ + if (!dominated_by_p (CDI_DOMINATORS, e->src, skip_head)) + { + /* There are more than one source operands that can + provide value to the SSA name, it is variant. */ + if (from) + return false; they might be the same though, for PHIs with > 2 arguments. In the cycle handling you are not recursing via stmt_semi_invariant_p but only handle SSA name copies - any particular reason for that? +static bool +branch_removable_p (basic_block branch_bb) +{ + if (single_pred_p (branch_bb)) + return true; I'm not sure what this function tests - at least the single_pred_p check looks odd to me given the dominator checks later. The single predecessor could simply be a forwarder. I wonder if you are looking for branches forming an irreducible loop? I think you can then check EDGE_IRREDUCIBLE_LOOP or BB_IRREDUCIBLE_LOOP on the condition block (btw, I don't see testcases covering the appearant special-cases in the patch - refering to existing ones via a comment often helps understanding the code). + + return EDGE_SUCC (cond_bb, (unsigned) invar[1]); +} magic ensures that invar[1] is always the invariant edge? Oh, it's a bool. Ick. I wonder if logic with int invariant_edge = -1; and the loop setting it to either 0 or 1 would be easier to follow... Note your stmt_semi_invariant_p check is exponential for a condition like _1 = 1; _2 = _1 + _1; _3 = _2 + _2; if (_3 != param_4(D)) because you don't track ops you already proved semi-invariant. We've run into such situation repeatedly in SCEV analysis so I doubt it can be disregarded as irrelevant in practice. A worklist approach could then also get rid of the recursion. You are already computing the stmts forming the condition in compute_added_num_insns so another option is to re-use that. Btw, I wonder if we can simply re-use PARAM_MAX_PEELED_INSNS instead of adding yet another param (it also happens to have the same size). Because we are "peeling" the loop. + edge invar_branch = get_cond_invariant_branch (loop, cond); + + if (!invar_branch) + return NULL; extra vertical space is unwanted in such cases. + if (dump_file && (dump_flags & TDF_DETAILS)) + { + fprintf (dump_file, "In %s(), split loop %d at branch<%s>, BB %d\n", + current_function_name (), loop1->num, + true_invar ? "T" : "F", cond_bb->index); + print_gimple_stmt (dump_file, cond, 0, TDF_SLIM | TDF_VOPS); + } can you please use sth like if (dump_enabled_p ()) dump_printf_loc (MSG_OPTIMIZED_LOCATIONS, cond, "loop split on semi-invariant condition"); so -fopt-info-loop will show it? + /* Generate a bool type temporary to hold result of the condition. */ + tree tmp = make_ssa_name (boolean_type_node); + gimple_stmt_iterator gsi = gsi_last_bb (cond_bb); + gimple *stmt = gimple_build_assign (tmp, + gimple_cond_code (cond), + gimple_cond_lhs (cond), + gimple_cond_rhs (cond)); shorter is gimple_seq stmts = NULL; tree tmp = gimple_build (&stmts, gimple_cond_code (cond), boolean_type_node, gimple_cond_lhs (cond), gimple_cond_rhs (cond)); gsi_insert_seq_before (&gsi, stmts, GSI_NEW_STMT); + gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); + gimple_cond_set_condition (cond, EQ_EXPR, tmp, boolean_true_node); but I wonder what's the point here to move the condition computation to a temporary? Why not just build the original condition again for break_cond? in split_loop_on_cond you'll find the first semi-invariant condition to split on, but we'll not visit the split loop again (also for original splitting I guess). Don't we eventually want to recurse on that? Otherwise the patch looks reasonable. Sorry for the many bits above and the late real review from me... Thanks, Richard. > Feng > > ________________________________________ > From: Richard Biener <richard.guent...@gmail.com> > Sent: Wednesday, October 23, 2019 5:04 PM > To: Feng Xue OS > Cc: Michael Matz; Philipp Tomsich; gcc-patches@gcc.gnu.org; Christoph > Müllner; erick.oc...@theobroma-systems.com > Subject: Re: [PATCH V3] Loop split upon semi-invariant condition (PR > tree-optimization/89134) > > On Wed, Oct 23, 2019 at 5:36 AM Feng Xue OS <f...@os.amperecomputing.com> > wrote: > > > > Michael, > > > > > I've only noticed a couple typos, and one minor remark. > > Typos corrected. > > > > > I just wonder why you duplicated these three loops instead of integrating > > > the real body into the existing LI_FROM_INNERMOST loop. I would have > > > expected your "if (!optimize_loop_for_size_p && split_loop_on_cond)" block > > > to simply be the else block of the existing > > > "if (... conditions for normal loop splitting ...)" block. > > Adjusted to do two kinds of loop-split in same LI_FROM_INNERMOST loop. > > > > > From my perspective it's okay, but you still need the okay of a proper > > > reviewer, > > > for which you might want to state the testing/regression state of this > > > patch relative to trunk. > > > > Richard, > > > > Is it ok to commit this patch? Bootstrap and regression test passed. And > > for > > performance, we can get about 7% improvement on spec2017 omnetpp with this > > patch. > > Can you please provide the corresponding ChangeLog entries as well and > attach the patch? It seems to be garbled by some encoding. > > Thanks, > Richard. > > > Thanks, > > Feng > > > > --- > > diff --git a/gcc/doc/invoke.texi b/gcc/doc/invoke.texi > > index 1407d019d14..d41e5aa0215 100644 > > --- a/gcc/doc/invoke.texi > > +++ b/gcc/doc/invoke.texi > > @@ -11481,6 +11481,19 @@ The maximum number of branches unswitched in a > > single loop. > > @item lim-expensive > > The minimum cost of an expensive expression in the loop invariant motion. > > > > +@item max-loop-cond-split-insns > > +In a loop, if a branch of a conditional statement is selected since certain > > +loop iteration, any operand that contributes to computation of the > > conditional > > +expression remains unchanged in all following iterations, the statement is > > +semi-invariant, upon which we can do a kind of loop split transformation. > > +@option{max-loop-cond-split-insns} controls maximum number of insns to be > > +added due to loop split on semi-invariant conditional statement. > > + > > +@item min-loop-cond-split-prob > > +When FDO profile information is available, > > @option{min-loop-cond-split-prob} > > +specifies minimum threshold for probability of semi-invariant condition > > +statement to trigger loop split. > > + > > @item iv-consider-all-candidates-bound > > Bound on number of candidates for induction variables, below which > > all candidates are considered for each use in induction variable > > diff --git a/gcc/params.def b/gcc/params.def > > index 322c37f8b96..73b59f7465e 100644 > > --- a/gcc/params.def > > +++ b/gcc/params.def > > @@ -415,6 +415,20 @@ DEFPARAM(PARAM_MAX_UNSWITCH_LEVEL, > > "The maximum number of unswitchings in a single loop.", > > 3, 0, 0) > > > > +/* The maximum number of increased insns due to loop split on > > semi-invariant > > + condition statement. */ > > +DEFPARAM(PARAM_MAX_LOOP_COND_SPLIT_INSNS, > > + "max-loop-cond-split-insns", > > + "The maximum number of insns to be added due to loop split on " > > + "semi-invariant condition statement.", > > + 100, 0, 0) > > + > > +DEFPARAM(PARAM_MIN_LOOP_COND_SPLIT_PROB, > > + "min-loop-cond-split-prob", > > + "The minimum threshold for probability of semi-invariant condition " > > + "statement to trigger loop split.", > > + 30, 0, 100) > > + > > /* The maximum number of insns in loop header duplicated by the copy loop > > headers pass. */ > > DEFPARAM(PARAM_MAX_LOOP_HEADER_INSNS, > > > > diff --git a/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C > > b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C > > new file mode 100644 > > index 00000000000..51f9da22fc7 > > --- /dev/null > > +++ b/gcc/testsuite/g++.dg/tree-ssa/loop-cond-split-1.C > > @@ -0,0 +1,33 @@ > > +/* { dg-do compile } */ > > +/* { dg-options "-O3 -fdump-tree-lsplit-details" } */ > > + > > +#include <string> > > +#include <map> > > + > > +using namespace std; > > + > > +class A > > +{ > > +public: > > + bool empty; > > + void set (string s); > > +}; > > + > > +class B > > +{ > > + map<int, string> m; > > + void f (); > > +}; > > + > > +extern A *ga; > > + > > +void B::f () > > +{ > > + for (map<int, string>::iterator iter = m.begin (); iter != m.end (); > > ++iter) > > + { > > + if (ga->empty) > > + ga->set (iter->second); > > + } > > +} > > + > > +/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } > > } */ > > diff --git a/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c > > b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c > > new file mode 100644 > > index 00000000000..bbd522d6bcd > > --- /dev/null > > +++ b/gcc/testsuite/gcc.dg/tree-ssa/loop-cond-split-1.c > > @@ -0,0 +1,23 @@ > > +/* { dg-do compile } */ > > +/* { dg-options "-O3 -fdump-tree-lsplit-details" } */ > > + > > +__attribute__((pure)) __attribute__((noinline)) int inc (int i) > > +{ > > + return i + 1; > > +} > > + > > +extern int do_something (void); > > +extern int b; > > + > > +void test(int n) > > +{ > > + int i; > > + > > + for (i = 0; i < n; i = inc (i)) > > + { > > + if (b) > > + b = do_something(); > > + } > > +} > > + > > +/* { dg-final { scan-tree-dump-times "split loop 1 at branch" 1 "lsplit" } > > } */ > > diff --git a/gcc/tree-ssa-loop-split.c b/gcc/tree-ssa-loop-split.c > > index f5f083384bc..5cffd4bb508 100644 > > --- a/gcc/tree-ssa-loop-split.c > > +++ b/gcc/tree-ssa-loop-split.c > > @@ -32,7 +32,10 @@ along with GCC; see the file COPYING3. If not see > > #include "tree-ssa-loop.h" > > #include "tree-ssa-loop-manip.h" > > #include "tree-into-ssa.h" > > +#include "tree-inline.h" > > +#include "tree-cfgcleanup.h" > > #include "cfgloop.h" > > +#include "params.h" > > #include "tree-scalar-evolution.h" > > #include "gimple-iterator.h" > > #include "gimple-pretty-print.h" > > @@ -40,7 +43,9 @@ along with GCC; see the file COPYING3. If not see > > #include "gimple-fold.h" > > #include "gimplify-me.h" > > > > -/* This file implements loop splitting, i.e. transformation of loops like > > +/* This file implements two kinds of loop splitting. > > + > > + One transformation of loops like: > > > > for (i = 0; i < 100; i++) > > { > > @@ -487,8 +492,9 @@ compute_new_first_bound (gimple_seq *stmts, class > > tree_niter_desc *niter, > > single exit of LOOP. */ > > > > static bool > > -split_loop (class loop *loop1, class tree_niter_desc *niter) > > +split_loop (class loop *loop1) > > { > > + class tree_niter_desc niter; > > basic_block *bbs; > > unsigned i; > > bool changed = false; > > @@ -496,8 +502,28 @@ split_loop (class loop *loop1, class tree_niter_desc > > *niter) > > tree border = NULL_TREE; > > affine_iv iv; > > > > + if (!single_exit (loop1) > > + /* ??? We could handle non-empty latches when we split the latch edge > > + (not the exit edge), and put the new exit condition in the new > > block. > > + OTOH this executes some code unconditionally that might have been > > + skipped by the original exit before. */ > > + || !empty_block_p (loop1->latch) > > + || !easy_exit_values (loop1) > > + || !number_of_iterations_exit (loop1, single_exit (loop1), &niter, > > + false, true) > > + || niter.cmp == ERROR_MARK > > + /* We can't yet handle loops controlled by a != predicate. */ > > + || niter.cmp == NE_EXPR) > > + return false; > > + > > bbs = get_loop_body (loop1); > > > > + if (!can_copy_bbs_p (bbs, loop1->num_nodes)) > > + { > > + free (bbs); > > + return false; > > + } > > + > > /* Find a splitting opportunity. */ > > for (i = 0; i < loop1->num_nodes; i++) > > if ((guard_iv = split_at_bb_p (loop1, bbs[i], &border, &iv))) > > @@ -505,8 +531,8 @@ split_loop (class loop *loop1, class tree_niter_desc > > *niter) > > /* Handling opposite steps is not implemented yet. Neither > > is handling different step sizes. */ > > if ((tree_int_cst_sign_bit (iv.step) > > - != tree_int_cst_sign_bit (niter->control.step)) > > - || !tree_int_cst_equal (iv.step, niter->control.step)) > > + != tree_int_cst_sign_bit (niter.control.step)) > > + || !tree_int_cst_equal (iv.step, niter.control.step)) > > continue; > > > > /* Find a loop PHI node that defines guard_iv directly, > > @@ -575,7 +601,7 @@ split_loop (class loop *loop1, class tree_niter_desc > > *niter) > > Compute the new bound for the guarding IV and patch the > > loop exit to use it instead of original IV and bound. */ > > gimple_seq stmts = NULL; > > - tree newend = compute_new_first_bound (&stmts, niter, border, > > + tree newend = compute_new_first_bound (&stmts, &niter, border, > > guard_code, guard_init); > > if (stmts) > > gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop1), > > @@ -612,6 +638,722 @@ split_loop (class loop *loop1, class tree_niter_desc > > *niter) > > return changed; > > } > > > > +/* Another transformation of loops like: > > + > > + for (i = INIT (); CHECK (i); i = NEXT ()) > > + { > > + if (expr (a_1, a_2, ..., a_n)) // expr is pure > > + a_j = ...; // change at least one a_j > > + else > > + S; // not change any a_j > > + } > > + > > + into: > > + > > + for (i = INIT (); CHECK (i); i = NEXT ()) > > + { > > + if (expr (a_1, a_2, ..., a_n)) > > + a_j = ...; > > + else > > + { > > + S; > > + i = NEXT (); > > + break; > > + } > > + } > > + > > + for (; CHECK (i); i = NEXT ()) > > + { > > + S; > > + } > > + > > + */ > > + > > +/* Data structure to hold temporary information during loop split upon > > + semi-invariant conditional statement. */ > > +class split_info { > > +public: > > + /* Array of all basic blocks in a loop, returned by get_loop_body(). */ > > + basic_block *bbs; > > + > > + /* All memory store/clobber statements in a loop. */ > > + auto_vec<gimple *> memory_stores; > > + > > + /* Whether above memory stores vector has been filled. */ > > + int need_init; > > + > > + split_info () : bbs (NULL), need_init (true) { } > > + > > + ~split_info () > > + { > > + if (bbs) > > + free (bbs); > > + } > > +}; > > + > > +/* Find all statements with memory-write effect in LOOP, including memory > > + store and non-pure function call, and keep those in a vector. This work > > + is only done one time, for the vector should be constant during analysis > > + stage of semi-invariant condition. */ > > + > > +static void > > +find_vdef_in_loop (struct loop *loop) > > +{ > > + split_info *info = (split_info *) loop->aux; > > + gphi *vphi = get_virtual_phi (loop->header); > > + > > + /* Indicate memory store vector has been filled. */ > > + info->need_init = false; > > + > > + /* If loop contains memory operation, there must be a virtual PHI node in > > + loop header basic block. */ > > + if (vphi == NULL) > > + return; > > + > > + /* All virtual SSA names inside the loop are connected to be a cyclic > > + graph via virtual PHI nodes. The virtual PHI node in loop header just > > + links the first and the last virtual SSA names, by using the last as > > + PHI operand to define the first. */ > > + const edge latch = loop_latch_edge (loop); > > + const tree first = gimple_phi_result (vphi); > > + const tree last = PHI_ARG_DEF_FROM_EDGE (vphi, latch); > > + > > + /* The virtual SSA cyclic graph might consist of only one SSA name, who > > + is defined by itself. > > + > > + .MEM_1 = PHI <.MEM_2(loop entry edge), .MEM_1(latch edge)> > > + > > + This means the loop contains only memory loads, so we can skip it. */ > > + if (first == last) > > + return; > > + > > + auto_vec<gimple *> other_stores; > > + auto_vec<tree> worklist; > > + auto_bitmap visited; > > + > > + bitmap_set_bit (visited, SSA_NAME_VERSION (first)); > > + bitmap_set_bit (visited, SSA_NAME_VERSION (last)); > > + worklist.safe_push (last); > > + > > + do > > + { > > + tree vuse = worklist.pop (); > > + gimple *stmt = SSA_NAME_DEF_STMT (vuse); > > + > > + /* We mark the first and last SSA names as visited at the beginning, > > + and reversely start the process from the last SSA name towards the > > + first, which ensures that this do-while will not touch SSA names > > + defined outside of the loop. */ > > + gcc_assert (gimple_bb (stmt) > > + && flow_bb_inside_loop_p (loop, gimple_bb (stmt))); > > + > > + if (gimple_code (stmt) == GIMPLE_PHI) > > + { > > + gphi *phi = as_a <gphi *> (stmt); > > + > > + for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) > > + { > > + tree arg = gimple_phi_arg_def (stmt, i); > > + > > + if (bitmap_set_bit (visited, SSA_NAME_VERSION (arg))) > > + worklist.safe_push (arg); > > + } > > + } > > + else > > + { > > + tree prev = gimple_vuse (stmt); > > + > > + /* Non-pure call statement is conservatively assumed to impact all > > + memory locations. So place call statements ahead of other > > memory > > + stores in the vector with an idea of of using them as shortcut > > + terminators to memory alias analysis. */ > > + if (gimple_code (stmt) == GIMPLE_CALL) > > + info->memory_stores.safe_push (stmt); > > + else > > + other_stores.safe_push (stmt); > > + > > + if (bitmap_set_bit (visited, SSA_NAME_VERSION (prev))) > > + worklist.safe_push (prev); > > + } > > + } while (!worklist.is_empty ()); > > + > > + info->memory_stores.safe_splice (other_stores); > > +} > > + > > + > > +/* Given STMT, memory load or pure call statement, check whether it is > > impacted > > + by some memory store in LOOP, excluding trace starting from SKIP_HEAD > > (the > > + trace is composed of SKIP_HEAD and those basic block dominated by it, > > always > > + corresponds to one branch of a conditional statement). If SKIP_HEAD is > > + NULL, all basic blocks of LOOP are checked. */ > > + > > +static bool > > +vuse_semi_invariant_p (struct loop *loop, gimple *stmt, > > + const_basic_block skip_head) > > +{ > > + split_info *info = (split_info *) loop->aux; > > + > > + /* Collect memory store/clobber statements if have not do that. */ > > + if (info->need_init) > > + find_vdef_in_loop (loop); > > + > > + tree rhs = is_gimple_assign (stmt) ? gimple_assign_rhs1 (stmt) : > > NULL_TREE; > > + ao_ref ref; > > + gimple *store; > > + unsigned i; > > + > > + ao_ref_init (&ref, rhs); > > + > > + FOR_EACH_VEC_ELT (info->memory_stores, i, store) > > + { > > + /* Skip basic blocks dominated by SKIP_HEAD, if non-NULL. */ > > + if (skip_head > > + && dominated_by_p (CDI_DOMINATORS, gimple_bb (store), skip_head)) > > + continue; > > + > > + if (!ref.ref || stmt_may_clobber_ref_p_1 (store, &ref)) > > + return false; > > + } > > + > > + return true; > > +} > > + > > +/* Forward declaration. */ > > + > > +static bool > > +stmt_semi_invariant_p (struct loop *loop, gimple *stmt, > > + const_basic_block skip_head); > > + > > +/* Suppose one condition branch, led by SKIP_HEAD, is not executed since > > + certain iteration of LOOP, check whether an SSA name (NAME) remains > > + unchanged in next iteration. We call this characteristic semi- > > + invariantness. SKIP_HEAD might be NULL, if so, nothing excluded, all > > + basic blocks and control flows in the loop will be considered. If non- > > + NULL, SSA name to check is supposed to be defined before SKIP_HEAD. */ > > + > > +static bool > > +ssa_semi_invariant_p (struct loop *loop, const tree name, > > + const_basic_block skip_head) > > +{ > > + gimple *def = SSA_NAME_DEF_STMT (name); > > + const_basic_block def_bb = gimple_bb (def); > > + > > + /* An SSA name defined outside a loop is definitely semi-invariant. */ > > + if (!def_bb || !flow_bb_inside_loop_p (loop, def_bb)) > > + return true; > > + > > + if (gimple_code (def) == GIMPLE_PHI) > > + { > > + /* For PHI node that is not in loop header, its source operands > > should > > + be defined inside the loop, which are seen as loop variant. */ > > + if (def_bb != loop->header || !skip_head) > > + return false; > > + > > + const_edge latch = loop_latch_edge (loop); > > + tree from = PHI_ARG_DEF_FROM_EDGE (as_a <gphi *> (def), latch); > > + > > + /* A PHI node in loop header contains two source operands, one is > > + initial value, the other is the copy of last iteration through loop > > + latch, we call it latch value. From the PHI node to definition > > + of latch value, if excluding branch trace from SKIP_HEAD, there > > + is no definition of other version of same variable, SSA name > > defined > > + by the PHI node is semi-invariant. > > + > > + loop entry > > + | .--- latch ---. > > + | | | > > + v v | > > + x_1 = PHI <x_0, x_3> | > > + | | > > + v | > > + .------- if (cond) -------. | > > + | | | > > + | [ SKIP ] | > > + | | | > > + | x_2 = ... | > > + | | | > > + '---- T ---->.<---- F ----' | > > + | | > > + v | > > + x_3 = PHI <x_1, x_2> | > > + | | > > + '----------------------' > > + > > + Suppose in certain iteration, execution flow in above graph goes > > + through true branch, which means that one source value to define > > + x_3 in false branch (x2) is skipped, x_3 only comes from x_1, and > > + x_1 in next iterations is defined by x_3, we know that x_1 will > > + never changed if COND always chooses true branch from then on. */ > > + > > + while (from != name) > > + { > > + /* A new value comes from a CONSTANT. */ > > + if (TREE_CODE (from) != SSA_NAME) > > + return false; > > + > > + gimple *stmt = SSA_NAME_DEF_STMT (from); > > + const_basic_block bb = gimple_bb (stmt); > > + > > + /* A new value comes from outside of loop. */ > > + if (!bb || !flow_bb_inside_loop_p (loop, bb)) > > + return false; > > + > > + from = NULL_TREE; > > + > > + if (gimple_code (stmt) == GIMPLE_PHI) > > + { > > + gphi *phi = as_a <gphi *> (stmt); > > + > > + for (unsigned i = 0; i < gimple_phi_num_args (phi); ++i) > > + { > > + const_edge e = gimple_phi_arg_edge (phi, i); > > + > > + /* Don't consider redefinitions in excluded basic blocks. > > */ > > + if (!dominated_by_p (CDI_DOMINATORS, e->src, skip_head)) > > + { > > + /* There are more than one source operands that can > > + provide value to the SSA name, it is variant. */ > > + if (from) > > + return false; > > + > > + from = gimple_phi_arg_def (phi, i); > > + } > > + } > > + } > > + else if (gimple_code (stmt) == GIMPLE_ASSIGN) > > + { > > + /* For simple value copy, check its rhs instead. */ > > + if (gimple_assign_ssa_name_copy_p (stmt)) > > + from = gimple_assign_rhs1 (stmt); > > + } > > + > > + /* Any other kind of definition is deemed to introduce a new value > > + to the SSA name. */ > > + if (!from) > > + return false; > > + } > > + return true; > > + } > > + > > + /* Value originated from volatile memory load or return of normal (non- > > + const/pure) call should not be treated as constant in each iteration. > > */ > > + if (gimple_has_side_effects (def)) > > + return false; > > + > > + /* Check if any memory store may kill memory load at this place. */ > > + if (gimple_vuse (def) && !vuse_semi_invariant_p (loop, def, skip_head)) > > + return false; > > + > > + /* Check operands of definition statement of the SSA name. */ > > + return stmt_semi_invariant_p (loop, def, skip_head); > > +} > > + > > +/* Check whether STMT is semi-invariant in LOOP, iff all its operands are > > + semi-invariant. Trace composed of basic block SKIP_HEAD and basic > > blocks > > + dominated by it are excluded from the loop. */ > > + > > +static bool > > +stmt_semi_invariant_p (struct loop *loop, gimple *stmt, > > + const_basic_block skip_head) > > +{ > > + ssa_op_iter iter; > > + tree use; > > + > > + /* Although operand of a statement might be SSA name, CONSTANT or > > VARDECL, > > + here we only need to check SSA name operands. This is because check > > on > > + VARDECL operands, which involve memory loads, must have been done > > + prior to invocation of this function in vuse_semi_invariant_p. */ > > + FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE) > > + { > > + if (!ssa_semi_invariant_p (loop, use, skip_head)) > > + return false; > > + } > > + > > + return true; > > +} > > + > > +/* Determine when conditional statement never transfers execution to one > > of its > > + branch, whether we can remove the branch's leading basic block > > (BRANCH_BB) > > + and those basic blocks dominated by BRANCH_BB. */ > > + > > +static bool > > +branch_removable_p (basic_block branch_bb) > > +{ > > + if (single_pred_p (branch_bb)) > > + return true; > > + > > + edge e; > > + edge_iterator ei; > > + > > + FOR_EACH_EDGE (e, ei, branch_bb->preds) > > + { > > + if (dominated_by_p (CDI_DOMINATORS, e->src, branch_bb)) > > + continue; > > + > > + if (dominated_by_p (CDI_DOMINATORS, branch_bb, e->src)) > > + continue; > > + > > + /* The branch can be reached from opposite branch, or from some > > + statement not dominated by the conditional statement. */ > > + return false; > > + } > > + > > + return true; > > +} > > + > > +/* Find out which branch of a conditional statement (COND) is invariant in > > the > > + execution context of LOOP. That is: once the branch is selected in > > certain > > + iteration of the loop, any operand that contributes to computation of > > the > > + conditional statement remains unchanged in all following iterations. */ > > + > > +static edge > > +get_cond_invariant_branch (struct loop *loop, gcond *cond) > > +{ > > + basic_block cond_bb = gimple_bb (cond); > > + basic_block targ_bb[2]; > > + bool invar[2]; > > + unsigned invar_checks; > > + > > + for (unsigned i = 0; i < 2; i++) > > + { > > + targ_bb[i] = EDGE_SUCC (cond_bb, i)->dest; > > + > > + /* One branch directs to loop exit, no need to perform loop split > > upon > > + this conditional statement. Firstly, it is trivial if the exit > > branch > > + is semi-invariant, for the statement is just to break loop. > > Secondly, > > + if the opposite branch is semi-invariant, it means that the > > statement > > + is real loop-invariant, which is covered by loop unswitch. */ > > + if (!flow_bb_inside_loop_p (loop, targ_bb[i])) > > + return NULL; > > + } > > + > > + invar_checks = 0; > > + > > + for (unsigned i = 0; i < 2; i++) > > + { > > + invar[!i] = false; > > + > > + if (!branch_removable_p (targ_bb[i])) > > + continue; > > + > > + /* Given a semi-invariant branch, if its opposite branch dominates > > + loop latch, it and its following trace will only be executed in > > + final iteration of loop, namely it is not part of repeated body > > + of the loop. Similar to the above case that the branch is loop > > + exit, no need to split loop. */ > > + if (dominated_by_p (CDI_DOMINATORS, loop->latch, targ_bb[i])) > > + continue; > > + > > + invar[!i] = stmt_semi_invariant_p (loop, cond, targ_bb[i]); > > + invar_checks++; > > + } > > + > > + /* With both branches being invariant (handled by loop unswitch) or > > + variant is not what we want. */ > > + if (invar[0] ^ !invar[1]) > > + return NULL; > > + > > + /* Found a real loop-invariant condition, do nothing. */ > > + if (invar_checks < 2 && stmt_semi_invariant_p (loop, cond, NULL)) > > + return NULL; > > + > > + return EDGE_SUCC (cond_bb, (unsigned) invar[1]); > > +} > > + > > +/* Calculate increased code size measured by estimated insn number if > > applying > > + loop split upon certain branch (BRANCH_EDGE) of a conditional > > statement. */ > > + > > +static int > > +compute_added_num_insns (struct loop *loop, const_edge branch_edge) > > +{ > > + basic_block cond_bb = branch_edge->src; > > + unsigned branch = EDGE_SUCC (cond_bb, 1) == branch_edge; > > + basic_block opposite_bb = EDGE_SUCC (cond_bb, !branch)->dest; > > + basic_block *bbs = ((split_info *) loop->aux)->bbs; > > + int num = 0; > > + > > + for (unsigned i = 0; i < loop->num_nodes; i++) > > + { > > + /* Do no count basic blocks only in opposite branch. */ > > + if (dominated_by_p (CDI_DOMINATORS, bbs[i], opposite_bb)) > > + continue; > > + > > + num += estimate_num_insns_seq (bb_seq (bbs[i]), &eni_size_weights); > > + } > > + > > + /* It is unnecessary to evaluate expression of the conditional statement > > + in new loop that contains only invariant branch. This expression > > should > > + be constant value (either true or false). Exclude code size of insns > > + that contribute to computation of the expression. */ > > + > > + auto_vec<gimple *> worklist; > > + hash_set<gimple *> removed; > > + gimple *stmt = last_stmt (cond_bb); > > + > > + worklist.safe_push (stmt); > > + removed.add (stmt); > > + num -= estimate_num_insns (stmt, &eni_size_weights); > > + > > + do > > + { > > + ssa_op_iter opnd_iter; > > + use_operand_p opnd_p; > > + > > + stmt = worklist.pop (); > > + FOR_EACH_PHI_OR_STMT_USE (opnd_p, stmt, opnd_iter, SSA_OP_USE) > > + { > > + tree opnd = USE_FROM_PTR (opnd_p); > > + > > + if (TREE_CODE (opnd) != SSA_NAME || SSA_NAME_IS_DEFAULT_DEF > > (opnd)) > > + continue; > > + > > + gimple *opnd_stmt = SSA_NAME_DEF_STMT (opnd); > > + use_operand_p use_p; > > + imm_use_iterator use_iter; > > + > > + if (removed.contains (opnd_stmt) > > + || !flow_bb_inside_loop_p (loop, gimple_bb (opnd_stmt))) > > + continue; > > + > > + FOR_EACH_IMM_USE_FAST (use_p, use_iter, opnd) > > + { > > + gimple *use_stmt = USE_STMT (use_p); > > + > > + if (!is_gimple_debug (use_stmt) && !removed.contains > > (use_stmt)) > > + { > > + opnd_stmt = NULL; > > + break; > > + } > > + } > > + > > + if (opnd_stmt) > > + { > > + worklist.safe_push (opnd_stmt); > > + removed.add (opnd_stmt); > > + num -= estimate_num_insns (opnd_stmt, &eni_size_weights); > > + } > > + } > > + } while (!worklist.is_empty ()); > > + > > + gcc_assert (num >= 0); > > + return num; > > +} > > + > > +/* Find out loop-invariant branch of a conditional statement (COND) if it > > has, > > + and check whether it is eligible and profitable to perform loop split > > upon > > + this branch in LOOP. */ > > + > > +static edge > > +get_cond_branch_to_split_loop (struct loop *loop, gcond *cond) > > +{ > > + edge invar_branch = get_cond_invariant_branch (loop, cond); > > + > > + if (!invar_branch) > > + return NULL; > > + > > + profile_probability prob = invar_branch->probability; > > + > > + /* When accurate profile information is available, and execution > > + frequency of the branch is too low, just let it go. */ > > + if (prob.reliable_p ()) > > + { > > + int thres = PARAM_VALUE (PARAM_MIN_LOOP_COND_SPLIT_PROB); > > + > > + if (prob < profile_probability::always ().apply_scale (thres, 100)) > > + return NULL; > > + } > > + > > + /* Add a threshold for increased code size to disable loop split. */ > > + if (compute_added_num_insns (loop, invar_branch) > > + > PARAM_VALUE (PARAM_MAX_LOOP_COND_SPLIT_INSNS)) > > + return NULL; > > + > > + return invar_branch; > > +} > > + > > +/* Given a loop (LOOP1) with a loop-invariant branch (INVAR_BRANCH) of some > > + conditional statement, perform loop split transformation illustrated > > + as the following graph. > > + > > + .-------T------ if (true) ------F------. > > + | .---------------. | > > + | | | | > > + v | v v > > + pre-header | pre-header > > + | .------------. | | .------------. > > + | | | | | | | > > + | v | | | v | > > + header | | header | > > + | | | | | > > + [ bool r = cond; ] | | | | > > + | | | | | > > + .---- if (r) -----. | | .--- if (true) ---. | > > + | | | | | | | > > + invariant | | | invariant | | > > + | | | | | | | > > + '---T--->.<---F---' | | '---T--->.<---F---' | > > + | | / | | > > + stmts | / stmts | > > + | | / | | > > + / \ | / / \ | > > + .-------* * [ if (!r) ] .-------* * | > > + | | | | | | > > + | latch | | latch | > > + | | | | | | > > + | '------------' | '------------' > > + '------------------------. .-----------' > > + loop1 | | loop2 > > + v v > > + exits > > + > > + In the graph, loop1 represents the part derived from original one, and > > + loop2 is duplicated using loop_version (), which corresponds to the part > > + of original one being splitted out. In loop1, a new bool temporary (r) > > + is introduced to keep value of the condition result. In original latch > > + edge of loop1, we insert a new conditional statement whose value comes > > + from previous temporary (r), one of its branch goes back to loop1 header > > + as a latch edge, and the other branch goes to loop2 pre-header as an > > entry > > + edge. And also in loop2, we abandon the variant branch of the > > conditional > > + statement candidate by setting a constant bool condition, based on which > > + branch is semi-invariant. */ > > + > > +static bool > > +do_split_loop_on_cond (struct loop *loop1, edge invar_branch) > > +{ > > + basic_block cond_bb = invar_branch->src; > > + bool true_invar = !!(invar_branch->flags & EDGE_TRUE_VALUE); > > + gcond *cond = as_a <gcond *> (last_stmt (cond_bb)); > > + > > + gcc_assert (cond_bb->loop_father == loop1); > > + > > + if (dump_file && (dump_flags & TDF_DETAILS)) > > + { > > + fprintf (dump_file, "In %s(), split loop %d at branch<%s>, BB %d\n", > > + current_function_name (), loop1->num, > > + true_invar ? "T" : "F", cond_bb->index); > > + print_gimple_stmt (dump_file, cond, 0, TDF_SLIM | TDF_VOPS); > > + } > > + > > + initialize_original_copy_tables (); > > + > > + struct loop *loop2 = loop_version (loop1, boolean_true_node, NULL, > > + profile_probability::always (), > > + profile_probability::never (), > > + profile_probability::always (), > > + profile_probability::always (), > > + true); > > + if (!loop2) > > + { > > + free_original_copy_tables (); > > + return false; > > + } > > + > > + /* Generate a bool type temporary to hold result of the condition. */ > > + tree tmp = make_ssa_name (boolean_type_node); > > + gimple_stmt_iterator gsi = gsi_last_bb (cond_bb); > > + gimple *stmt = gimple_build_assign (tmp, > > + gimple_cond_code (cond), > > + gimple_cond_lhs (cond), > > + gimple_cond_rhs (cond)); > > + > > + gsi_insert_before (&gsi, stmt, GSI_NEW_STMT); > > + gimple_cond_set_condition (cond, EQ_EXPR, tmp, boolean_true_node); > > + update_stmt (cond); > > + > > + basic_block cond_bb_copy = get_bb_copy (cond_bb); > > + gcond *cond_copy = as_a<gcond *> (last_stmt (cond_bb_copy)); > > + > > + /* Replace the condition in loop2 with a bool constant to let PassManager > > + remove the variant branch after current pass completes. */ > > + if (true_invar) > > + gimple_cond_make_true (cond_copy); > > + else > > + gimple_cond_make_false (cond_copy); > > + > > + update_stmt (cond_copy); > > + > > + /* Insert a new conditional statement on latch edge of loop1. This > > + statement acts as a switch to transfer execution from loop1 to loop2, > > + when loop1 enters into invariant state. */ > > + basic_block latch_bb = split_edge (loop_latch_edge (loop1)); > > + basic_block break_bb = split_edge (single_pred_edge (latch_bb)); > > + gimple *break_cond = gimple_build_cond (EQ_EXPR, tmp, boolean_true_node, > > + NULL_TREE, NULL_TREE); > > + > > + gsi = gsi_last_bb (break_bb); > > + gsi_insert_after (&gsi, break_cond, GSI_NEW_STMT); > > + > > + edge to_loop1 = single_succ_edge (break_bb); > > + edge to_loop2 = make_edge (break_bb, loop_preheader_edge (loop2)->src, > > 0); > > + > > + to_loop1->flags &= ~EDGE_FALLTHRU; > > + to_loop1->flags |= true_invar ? EDGE_FALSE_VALUE : EDGE_TRUE_VALUE; > > + to_loop2->flags |= true_invar ? EDGE_TRUE_VALUE : EDGE_FALSE_VALUE; > > + > > + update_ssa (TODO_update_ssa); > > + > > + /* Due to introduction of a control flow edge from loop1 latch to loop2 > > + pre-header, we should update PHIs in loop2 to reflect this connection > > + between loop1 and loop2. */ > > + connect_loop_phis (loop1, loop2, to_loop2); > > + > > + free_original_copy_tables (); > > + > > + rewrite_into_loop_closed_ssa_1 (NULL, 0, SSA_OP_USE, loop1); > > + > > + return true; > > +} > > + > > +/* Traverse all conditional statements in LOOP, to find out a good > > candidate > > + upon which we can do loop split. */ > > + > > +static bool > > +split_loop_on_cond (struct loop *loop) > > +{ > > + split_info *info = new split_info (); > > + basic_block *bbs = info->bbs = get_loop_body (loop); > > + bool do_split = false; > > + > > + /* Allocate an area to keep temporary info, and associate its address > > + with loop aux field. */ > > + loop->aux = info; > > + > > + for (unsigned i = 0; i < loop->num_nodes; i++) > > + { > > + basic_block bb = bbs[i]; > > + > > + /* We only consider conditional statement, which be executed at most > > once > > + in each iteration of the loop. So skip statements in inner loops. > > */ > > + if ((bb->loop_father != loop) || (bb->flags & BB_IRREDUCIBLE_LOOP)) > > + continue; > > + > > + /* Actually this check is not a must constraint. With it, we can > > ensure > > + conditional statement will always be executed in each iteration. > > */ > > + if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb)) > > + continue; > > + > > + gimple *last = last_stmt (bb); > > + > > + if (!last || gimple_code (last) != GIMPLE_COND) > > + continue; > > + > > + gcond *cond = as_a <gcond *> (last); > > + edge branch_edge = get_cond_branch_to_split_loop (loop, cond); > > + > > + if (branch_edge) > > + { > > + do_split_loop_on_cond (loop, branch_edge); > > + do_split = true; > > + break; > > + } > > + } > > + > > + delete info; > > + loop->aux = NULL; > > + > > + return do_split; > > +} > > + > > /* Main entry point. Perform loop splitting on all suitable loops. */ > > > > static unsigned int > > @@ -627,7 +1369,6 @@ tree_ssa_split_loops (void) > > /* Go through all loops starting from innermost. */ > > FOR_EACH_LOOP (loop, LI_FROM_INNERMOST) > > { > > - class tree_niter_desc niter; > > if (loop->aux) > > { > > /* If any of our inner loops was split, don't split us, > > @@ -636,29 +1377,14 @@ tree_ssa_split_loops (void) > > continue; > > } > > > > - if (single_exit (loop) > > - /* ??? We could handle non-empty latches when we split > > - the latch edge (not the exit edge), and put the new > > - exit condition in the new block. OTOH this executes some > > - code unconditionally that might have been skipped by the > > - original exit before. */ > > - && empty_block_p (loop->latch) > > - && !optimize_loop_for_size_p (loop) > > - && easy_exit_values (loop) > > - && number_of_iterations_exit (loop, single_exit (loop), &niter, > > - false, true) > > - && niter.cmp != ERROR_MARK > > - /* We can't yet handle loops controlled by a != predicate. */ > > - && niter.cmp != NE_EXPR > > - && can_duplicate_loop_p (loop)) > > + if (optimize_loop_for_size_p (loop)) > > + continue; > > + > > + if (split_loop (loop) || split_loop_on_cond (loop)) > > { > > - if (split_loop (loop, &niter)) > > - { > > - /* Mark our containing loop as having had some split inner > > - loops. */ > > - loop_outer (loop)->aux = loop; > > - changed = true; > > - } > > + /* Mark our containing loop as having had some split inner loops. > > */ > > + loop_outer (loop)->aux = loop; > > + changed = true; > > } > > } > > > > -- > > 2.17.1