External Email - Use Caution        

Dear FreeSurfer Developers,

I would like to run the Hippocampus subfields segmentation on Freesurfer 7.1.1. 
I am working on a HCP cluster with CentOS 7 (Core). Before running the 
segmentation on my data, I first tried to run the segmentation on your fully 
recon-ed subject Bert typing 'segmentHA_T1.sh bert'. Unfortunately the process 
stopped after one minute and it reported the following error:


Out of memory. Type HELP MEMORY for your options.

Error in segmentSubjectT1_autoEstimateAlveusML (line 210)


I've searched the list and no similar errors have been reported. Also, I have 
attached the hippocampal-subfields-T1.log file in case it's of any use.

1) FreeSurfer version: freesurfer-linux-centos7_x86_64-7.1.1-20200723-8b40551

2) Platform: CentOS Linux 7 (Core)

3) Kernel: Linux 4.19.94-300.el7.x86_64


Does anyone have any suggestions on how this can be fixed?

Thank very much you in advance!

Kind Regards,

Alessio

#--------------------------------------------
#@# Hippocampal Subfields processing (T1) left Thu Dec 17 12:05:21 CET 2020
------------------------------------------
Setting up environment variables
---
LD_LIBRARY_PATH is 
.:/opt/freesurfer/7.1.1/MCRv84//runtime/glnxa64:/opt/freesurfer/7.1.1/MCRv84//bin/glnxa64:/opt/freesurfer/7.1.1/MCRv84//sys/os/glnxa64:/opt/freesurfer/7.1.1/MCRv84//sys/java/jre/glnxa64/jre/lib/amd64/native_threads:/opt/freesurfer/7.1.1/MCRv84//sys/java/jre/glnxa64/jre/lib/amd64/server:/opt/freesurfer/7.1.1/MCRv84//sys/java/jre/glnxa64/jre/lib/amd64/client:/opt/freesurfer/7.1.1/MCRv84//sys/java/jre/glnxa64/jre/lib/amd64:/opt/R/3.5.1/lib64/R/lib:/opt/cluster/lib:/opt/cluster/external/p7zip-16.02/lib/p7zip
Registering imageDump.mgz to hippocampal mask from ASEG
7.1.1

--mov: Using imageDump.mgz as movable/source volume.
--dst: Using 
/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz
 as target volume.
--lta: Output transform as trash.lta . 
--mapmovhdr: Will save header adjusted movable as imageDump_coregistered.mgz !
--sat: Using saturation 50 in M-estimator!

reading source 'imageDump.mgz'...
reading target 
'/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz'...

Registration::setSourceAndTarget(MRI s, MRI t, keeptype = TRUE )
   Type Source : 0  Type Target : 3  ensure both FLOAT (3)
   Reordering axes in mov to better fit dst... ( -1 3 -2 )
 Determinant after swap : 0.015625
   Mov: (0.25, 0.25, 0.25)mm  and dim (131, 99, 241)
   Dst: (1, 1, 1)mm  and dim (38, 39, 63)
   Asserting both images: 1mm isotropic 
    - reslicing Mov ...
       -- changing data type from 0 to 3 (noscale = 0)...
       -- Original : (0.25, 0.25, 0.25)mm and (131, 99, 241) voxels.
       -- Resampled: (1, 1, 1)mm and (38, 39, 63) voxels.
       -- Reslicing using cubic bspline 
MRItoBSpline degree 3
    - no Dst reslice necessary


 Registration::computeMultiresRegistration 
   - computing centroids 
   - computing initial transform
     -- using translation info
   - Get Gaussian Pyramid Limits ( min size: 16 max size: -1 ) 
   - Build Gaussian Pyramid ( Limits min steps: 0 max steps: 1 ) 
   - Build Gaussian Pyramid ( Limits min steps: 0 max steps: 1 ) 
   - initial transform:
Ti = [ ...
 1.0000000000000                0                0 -0.3773093080253 
               0  1.0000000000000                0  2.1148246252257 
               0                0  1.0000000000000 -2.0733903827146 
               0                0                0  1.0000000000000  ]

   - initial iscale:  Ii =1

Resolution: 1  S( 19 19 31 )  T( 19 19 31 )
 Iteration(f): 1
     -- diff. to prev. transform: 13.1875
 Iteration(f): 2
     -- diff. to prev. transform: 6.80473
 Iteration(f): 3
     -- diff. to prev. transform: 6.6167
 Iteration(f): 4
     -- diff. to prev. transform: 6.78298
 Iteration(f): 5
     -- diff. to prev. transform: 0.625873 max it: 5 reached!

Resolution: 0  S( 38 39 63 )  T( 38 39 63 )
 Iteration(f): 1
     -- diff. to prev. transform: 6.47442
 Iteration(f): 2
     -- diff. to prev. transform: 1.63452
 Iteration(f): 3
     -- diff. to prev. transform: 0.300624
 Iteration(f): 4
     -- diff. to prev. transform: 0.107388
 Iteration(f): 5
     -- diff. to prev. transform: 0.0250386 max it: 5 reached!

   - final transform: 
Tf = [ ...
 0.9905498265002 -0.0558283673261 -0.1252766323867  5.6450814796323 
 0.1003642556845  0.9175875714603  0.3846557745341 -12.9958814513727 
 0.0934775769976 -0.3935940066912  0.9145193822415  7.3531774744762 
               0                0                0  1.0000000000000  ]

   - final iscale:  If = 1

**********************************************************
*
* WARNING: Registration did not converge in 5 steps! 
*          Problem might be ill posed. 
*          Please inspect output manually!
*
**********************************************************

Final Transform:
Adjusting final transform due to initial resampling (voxel or size changes) ...
M = [ ...
-0.2476374566250 -0.0313191580967  0.0139570918315 38.5003166492308 
-0.0250910639211  0.0961639436335 -0.2293968928651 20.0770216669627 
-0.0233693942494  0.2286298455604  0.0983985016728 -0.5533689445097 
               0                0                0  1.0000000000000  ]

 Determinant : -0.015625


writing output transformation to trash.lta ...
converting VOX to RAS and saving RAS2RAS...

mapmovhdr: Changing vox2ras MOV header (to map to DST) ...

To check aligned result, run:
  freeview -v 
/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz
 imageDump_coregistered.mgz


Registration took 0 minutes and 1 seconds.

 Thank you for using RobustRegister! 
 If you find it useful and use it for a publication, please cite: 

 Highly Accurate Inverse Consistent Registration: A Robust Approach
 M. Reuter, H.D. Rosas, B. Fischl.  NeuroImage 53(4):1181-1196, 2010.
 http://dx.doi.org/10.1016/j.neuroimage.2010.07.020
 http://reuter.mit.edu/papers/reuter-robreg10.pdf

7.1.1

--mov: Using imageDump.mgz as movable/source volume.
--dst: Using 
/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz
 as target volume.
--lta: Output transform as trash.lta . 
--mapmovhdr: Will save header adjusted movable as imageDump_coregistered.mgz !
--affine: Enabling affine transform!
--sat: Using saturation 50 in M-estimator!

reading source 'imageDump.mgz'...
reading target 
'/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz'...

Registration::setSourceAndTarget(MRI s, MRI t, keeptype = TRUE )
   Type Source : 0  Type Target : 3  ensure both FLOAT (3)
   Reordering axes in mov to better fit dst... ( -1 3 -2 )
 Determinant after swap : 0.015625
   Mov: (0.25, 0.25, 0.25)mm  and dim (131, 99, 241)
   Dst: (1, 1, 1)mm  and dim (38, 39, 63)
   Asserting both images: 1mm isotropic 
    - reslicing Mov ...
       -- changing data type from 0 to 3 (noscale = 0)...
       -- Original : (0.25, 0.25, 0.25)mm and (131, 99, 241) voxels.
       -- Resampled: (1, 1, 1)mm and (38, 39, 63) voxels.
       -- Reslicing using cubic bspline 
MRItoBSpline degree 3
    - no Dst reslice necessary


 Registration::computeMultiresRegistration 
   - computing centroids 
   - computing initial transform
     -- using translation info
   - Get Gaussian Pyramid Limits ( min size: 16 max size: -1 ) 
   - Build Gaussian Pyramid ( Limits min steps: 0 max steps: 1 ) 
   - Build Gaussian Pyramid ( Limits min steps: 0 max steps: 1 ) 
   - initial transform:
Ti = [ ...
 1.0000000000000                0                0 -0.3773081857769 
               0  1.0000000000000                0  2.1147372976911 
               0                0  1.0000000000000 -2.0733392207393 
               0                0                0  1.0000000000000  ]

   - initial iscale:  Ii =1

Resolution: 1  S( 19 19 31 )  T( 19 19 31 )
 Iteration(f): 1
     -- diff. to prev. transform: 13.4057
 Iteration(f): 2
     -- diff. to prev. transform: 6.82866
 Iteration(f): 3
     -- diff. to prev. transform: 9.88716
 Iteration(f): 4
     -- diff. to prev. transform: 10.7689
 Iteration(f): 5
     -- diff. to prev. transform: 3.25195 max it: 5 reached!

Resolution: 0  S( 38 39 63 )  T( 38 39 63 )
 Iteration(f): 1
     -- diff. to prev. transform: 10.2673
 Iteration(f): 2
     -- diff. to prev. transform: 2.17054
 Iteration(f): 3
     -- diff. to prev. transform: 0.806598
 Iteration(f): 4
     -- diff. to prev. transform: 0.338381
 Iteration(f): 5
     -- diff. to prev. transform: 0.104875 max it: 5 reached!

   - final transform: 
Tf = [ ...
 1.2030223237189  0.1884187660644 -0.0167932422667 -7.4790282553433 
 0.1560810568266  1.0236440479534  0.4645717799507 -19.5773333553553 
 0.2438450826014 -0.5807477383867  0.9710372375638  5.5635008355781 
               0                0                0  1.0000000000000  ]

   - final iscale:  If = 1

**********************************************************
*
* WARNING: Registration did not converge in 5 steps! 
*          Problem might be ill posed. 
*          Please inspect output manually!
*
**********************************************************

Final Transform:
Adjusting final transform due to initial resampling (voxel or size changes) ...
M = [ ...
-0.3007555803217 -0.0041983073249 -0.0471046758039 40.7127838486195 
-0.0390202577973  0.1161429175878 -0.2559109503930 18.9165458088794 
-0.0609612673877  0.2427592519668  0.1451869008898 -2.9024121066671 
               0                0                0  1.0000000000000  ]

 Determinant : -0.0237324

 Decompose into Rot * Shear * Scale : 

Rot = [ ...
-0.9890542235170 -0.1314605763023 -0.0670064162713 
-0.0031820392005  0.4730167673437 -0.8810476788677 
-0.1475181940297  0.8711907108607  0.4682575442428  ]

Shear = [ ...
 1.0000000000000 -0.1199668004135  0.0876086668809 
-0.1044704729898  1.0000000000000  0.0392019164457 
 0.0847597162801  0.0435529158645  1.0000000000000  ]

Scale = diag([  0.3065806370242  0.2669790646166  0.2966109260227  ])


writing output transformation to trash.lta ...
converting VOX to RAS and saving RAS2RAS...

mapmovhdr: Changing vox2ras MOV header (to map to DST) ...

To check aligned result, run:
  freeview -v 
/home/cogaff/alepro/subjects/betty/tmp/hippoSF_T1_v21_left//hippoAmygBinaryMask_autoCropped.mgz
 imageDump_coregistered.mgz


Registration took 0 minutes and 1 seconds.

 Thank you for using RobustRegister! 
 If you find it useful and use it for a publication, please cite: 

 Highly Accurate Inverse Consistent Registration: A Robust Approach
 M. Reuter, H.D. Rosas, B. Fischl.  NeuroImage 53(4):1181-1196, 2010.
 http://dx.doi.org/10.1016/j.neuroimage.2010.07.020
 http://reuter.mit.edu/papers/reuter-robreg10.pdf

Out of memory. Type HELP MEMORY for your options.

Error in segmentSubjectT1_autoEstimateAlveusML (line 210)



MATLAB:nomem
@#@FSTIME  2020:12:17:12:05:21 run_segmentSubjectT1_autoEstimateAlveusML.sh N 
14 e 13.45 S 1.20 U 8.73 P 73% M 849776 F 0 R 340169 W 0 c 2552 w 6922 I 262320 
O 216696 L 12.17 9.21 10.22
@#@FSLOADPOST 2020:12:17:12:05:34 run_segmentSubjectT1_autoEstimateAlveusML.sh 
N 14 11.08 9.11 10.17
Linux mentat004.dccn.nl 4.19.94-300.el7.x86_64 #1 SMP Thu Jan 9 16:15:13 UTC 
2020 x86_64 x86_64 x86_64 GNU/Linux

T1 hippocampal subfields exited with ERRORS at Thu Dec 17 12:05:35 CET 2020
_______________________________________________
Freesurfer mailing list
Freesurfer@nmr.mgh.harvard.edu
https://mail.nmr.mgh.harvard.edu/mailman/listinfo/freesurfer

Reply via email to