External Email - Use Caution        

Dear Colleagues,

We are pleased to announce the release of DPABISurf V1.2!

DPABISurf is a surface-based resting-state fMRI data analysis toolbox
evolved from DPABI/DPARSF, as easy-to-use as DPABI/DPARSF. DPABISurf is
based on fMRIPprep 1.5.0 (Esteban et al., 2018)(RRID:SCR_016216), and based
on FreeSurfer 6.0.1 (Dale et al., 1999)(RRID:SCR_001847), ANTs 2.2.0
(Avants et al., 2008)(RRID:SCR_004757), FSL 5.0.9 (Jenkinson et al.,
2002)(RRID:SCR_002823), AFNI 20160207 (Cox, 1996)(RRID:SCR_005927), SPM12
(Ashburner, 2012)(RRID:SCR_007037), PALM alpha112 (Winkler et al., 2016),
GNU Parallel (Tange, 2011), MATLAB (The MathWorks Inc., Natick, MA, US)
(RRID:SCR_001622), Docker (https://docker.com) (RRID:SCR_016445), and DPABI
V4.2 (Yan et al., 2016)(RRID:SCR_010501). DPABISurf provides user-friendly
graphical user interface (GUI) for pipeline surface-based preprocessing,
statistical analyses and results viewing, while requires no
programming/scripting skills from the users.

<http://www.rfmri.org/dpabi>

The DPABISurf pipeline first converts the user specified data into BIDS
format (Gorgolewski et al., 2016), and then calls fMRIPprep 1.5.0 docker to
preprocess the structural and functional MRI data, which integrates
FreeSurfer, ANTs, FSL and AFNI. With fMRIPprep, the data is processed into
FreeSurfer fsaverage5 surface space and MNI volume space. DPABISurf further
performs nuisance covariates regression (including ICA-AROMA) on the
surface-based data (volume-based data is processed as well), and then
calculate the commonly used R-fMRI metrics: amplitude of low frequency
fluctuation (ALFF) (Zang et al., 2007), fractional ALFF (Zou et al., 2008),
regional homogeneity (Zang et al., 2004), degree centrality (Zuo and Xing,
2014), and seed-based functional connectivity. DPABISurf also performs
surface-based smoothing by calling FreeSurfer’s mri_surf2surf command.
These processed metrics then enters surfaced-based statistical analyses
within DPABISurf, which could perform surfaced-based permutation test with
TFCE by integrating PALM. Finally, the corrected results could be viewed by
the convenient surface viewer DPABISurf_VIEW, which is derived from
spm_mesh_render.m.

<http://www.rfmri.org/dpabi>

DPABISurf is designed to make surface-based data analysis require minimum
manual operations and almost no programming/scripting experience. We
anticipate this open-source toolbox will assist novices and expert users
alike and continue to support advancing R-fMRI methodology and its
application to clinical translational studies.

DPABISurf is open-source and distributed under GNU/GPL, available with
DPABI at http://www.rfmri.org/dpabi. It supports Windows 10 Pro, MacOS and
Linux operating systems. You can run it with or without MATLAB.

1. With MATLAB.
1.1. Please go to http://www.rfmri.org/dpabi to download DPABI.
1.2. Add with subfolders for DPABI in MATLAB's path setting.
1.3. Input 'dpabi' and then follow the instructions of the "Install" Button
on DPABISurf.
2. Without MATLAB.
2.1. Install Docker.
2.2. Terminal: docker pull cgyan/dpabi
2.3. Terminal: docker run -d --rm -v
/My/FreeSurferLicense/Path/license.txt:/opt/freesurfer/license.txt
-v /My/Data/Path:/data -p 5925:5925 cgyan/dpabi x11vnc -forever -shared
-usepw -create -rfbport 5925
/My/FreeSurferLicense/Path/license.txt: Where you stored the
FreeSurferLicense got from
https://surfer.nmr.mgh.harvard.edu/registration.html.
/My/Data/Path: This is where you stored your data. In Docker, the path is
/data.
2.4. Open VNC Viewer, connect to localhost:5925, the password is 'dpabi'.
2.5. In the terminal within the VNC Viewer, input "bash", and then input:
/opt/DPABI/DPABI_StandAlone/run_DPABI_StandAlone.sh ${MCRPath}


Now please enjoy the StandAlone version of DPABISurf with GUI!


If you don't want to run with GUI, you can also call the compiled version
of DPABISurf_run. E.g.,
docker run -it --rm -v
/My/FreeSurferLicense/Path/license.txt:/opt/freesurfer/license.txt
-v /My/Data/Path:/data cgyan/dpabi /bin/bash
/opt/DPABI/DPABI_StandAlone/run_DPABISurf_run_StandAlone.sh ${MCRPath}
/data/DPABISurf_Cfg.mat
New features of DPABISurf_V1.2_190919 within DPABI_V4.2_190919 (download at
http://rfmri.org/dpabi, please also update the docker file by: docker pull
cgyan/dpabi):
1. DPABISurf_V1.2_190919 updated.
1.1. A quality control module was added to DPABISurf. Now users can quality
control surface reconstruction, EPI to T1 registration and T1 to MNI
registration for all the subjects in one HTML file, respectively (based on
fmriprep 1.5.0). For volume-based analysis, users can also generate group
mask for DPABISurf, and exclude subjects by thresholding coverage and head
motion.
1.2. DPABISurf now also output sulcus depth and volume in fsaverage and
fsaverage5 spaces for statistical analysis.
1.3. In results organizer of DPABISurf, the redundant files would not be
organized now. In addition, the fmriprep and freesurfer files were backed
up, while excluding T1 image that may have privacy information such as face.
2. DPABI_VIEW has a new function "Surface View with DPABISurf_VIEW" now.
This function will convert the files to fsaverage surface using
freesurfer's mri_vol2surf command. Then the results were displayed by
calling DPABISurf_VIEW to generate surface-based picture.
Tips:
1) For Linux or Mac OS, please start matlab from terminal in order to reach
docker in DPABI (e.g., Linux: matlab; Mac: open
/Applications/MATLAB_R2018a.app/).
2) Before running DPABISurf_Pipeline, you can test the docker environment
by running DPABI->DPABISurf->Utilities->Volume-Surface Projector. If the
file can be successfully projected to surface, then the software is all
set.


References:

   - Ashburner, J. (2012). SPM: a history. *Neuroimage*, 62(2), 791-800,
   doi:10.1016/j.neuroimage.2011.10.025.
   - Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric
   diffeomorphic image registration with cross-correlation: evaluating
   automated labeling of elderly and neurodegenerative brain. *Med Image
   Anal*, 12(1), 26-41, doi:10.1016/j.media.2007.06.004.
   - Cox, R.W. (1996). AFNI: software for analysis and visualization of
   functional magnetic resonance neuroimages. *Comput Biomed Res*, 29(3),
   162-173.
   - Dale, A.M., Fischl, B., Sereno, M.I. (1999). Cortical surface-based
   analysis. I. Segmentation and surface reconstruction. *Neuroimage*,
   9(2), 179-194, doi:10.1006/nimg.1998.0395.
   - Esteban, O., Markiewicz, C.J., Blair, R.W., Moodie, C.A., Isik, A.I.,
   Erramuzpe, A., Kent, J.D., Goncalves, M., DuPre, E., Snyder, M., Oya, H.,
   Ghosh, S.S., Wright, J., Durnez, J., Poldrack, R.A., Gorgolewski, K.J.
   (2018). fMRIPrep: a robust preprocessing pipeline for functional MRI. *Nat
   Methods*, doi:10.1038/s41592-018-0235-4.
   - Gorgolewski, K.J., Auer, T., Calhoun, V.D., Craddock, R.C., Das, S.,
   Duff, E.P., Flandin, G., Ghosh, S.S., Glatard, T., Halchenko, Y.O.,
   Handwerker, D.A., Hanke, M., Keator, D., Li, X., Michael, Z., Maumet, C.,
   Nichols, B.N., Nichols, T.E., Pellman, J., Poline, J.B., Rokem, A.,
   Schaefer, G., Sochat, V., Triplett, W., Turner, J.A., Varoquaux, G.,
   Poldrack, R.A. (2016). The brain imaging data structure, a format for
   organizing and describing outputs of neuroimaging experiments. *Sci Data*,
   3, 160044, doi:10.1038/sdata.2016.44.
   - Jenkinson, M., Bannister, P., Brady, M., Smith, S. (2002). Improved
   optimization for the robust and accurate linear registration and motion
   correction of brain images. *Neuroimage*, 17(2), 825-841.
   - Tange, O. (2011). Gnu parallel-the command-line power tool. *The
   USENIX Magazine*, 36(1), 42-47.
   - Winkler, A.M., Ridgway, G.R., Douaud, G., Nichols, T.E., Smith, S.M.
   (2016). Faster permutation inference in brain imaging. *Neuroimage*,
   141, 502-516, doi:10.1016/j.neuroimage.2016.05.068.
   - Yan, C.G., Wang, X.D., Zuo, X.N., Zang, Y.F. (2016). DPABI: Data
   Processing & Analysis for (Resting-State) Brain Imaging.
   *Neuroinformatics*, 14(3), 339-351, doi:10.1007/s12021-016-9299-4.
   - Zang, Y., Jiang, T., Lu, Y., He, Y., Tian, L. (2004). Regional
   homogeneity approach to fMRI data analysis. *Neuroimage*, 22(1),
   394-400, doi:http://dx.doi.org/10.1016/j.neuroimage.2003.12.030.
   - Zang, Y.F., He, Y., Zhu, C.Z., Cao, Q.J., Sui, M.Q., Liang, M., Tian,
   L.X., Jiang, T.Z., Wang, Y.F. (2007). Altered baseline brain activity in
   children with ADHD revealed by resting-state functional MRI. *Brain Dev*,
   29(2), 83-91, doi:10.1016/j.braindev.2006.07.002.
   - Zou, Q.-H., Zhu, C.-Z., Yang, Y., Zuo, X.-N., Long, X.-Y., Cao, Q.-J.,
   Wang, Y.-F., Zang, Y.-F. (2008). An improved approach to detection of
   amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI:
   Fractional ALFF. *Journal of Neuroscience Methods*, 172(1), 137-141, doi:
   http://dx.doi.org/10.1016/j.jneumeth.2008.04.012.
   - Zuo, X.-N., Xing, X.-X. (2014). Test-retest reliabilities of
   resting-state FMRI measurements in human brain functional connectomics: A
   systems neuroscience perspective. *Neuroscience & Biobehavioral Reviews*,
   45, 100-118, doi:http://dx.doi.org/10.1016/j.neubiorev.2014.05.009.

Best,

Chao-Gan

-- 
Chao-Gan YAN, Ph.D.
Professor, Principal Investigator
Director, International Big-Data Center for Depression Research
Deputy Director, Magnetic Resonance Imaging Research Center
Institute of Psychology, Chinese Academy of Sciences
16 Lincui Road, Chaoyang District, Beijing 100101, China
-
Initiator
<http://rfmri.org/DPARSF>DPABI <http://rfmri.org/DPABI>
<http://rfmri.org/DPARSF>, <http://dpabi.org>DPARSF
<http://rfmri.org/DPARSF>, PRN <http://rfmri.org/PRN> and The R-fMRI Network
<http://rfmri.org> (RFMRI.ORG <http://rfmri.org/>)
http://rfmri.org/yan
http://scholar.google.com/citations?user=lJQ9B58AAAAJ
_______________________________________________
Freesurfer mailing list
Freesurfer@nmr.mgh.harvard.edu
https://mail.nmr.mgh.harvard.edu/mailman/listinfo/freesurfer

Reply via email to