> -----原始邮件-----
> 发件人: "Guo, Yejun" <yejun....@intel.com>
> 发送时间: 2019-05-09 09:52:46 (星期四)
> 收件人: "FFmpeg development discussions and patches" <ffmpeg-devel@ffmpeg.org>
> 抄送: 
> 主题: Re: [FFmpeg-devel] [PATCH] libavfilter: Add multiple padding methods in 
> FFmpeg dnn native mode.
> 
> 
> 
> > -----Original Message-----
> > From: ffmpeg-devel [mailto:ffmpeg-devel-boun...@ffmpeg.org] On Behalf Of
> > xwm...@pku.edu.cn
> > Sent: Wednesday, May 08, 2019 5:34 PM
> > To: ffmpeg-devel@ffmpeg.org
> > Subject: [FFmpeg-devel] [PATCH] libavfilter: Add multiple padding methods in
> > FFmpeg dnn native mode.
> > 
> > 
> > 
> > 
> > This patch is for the support of derain filter project in GSoC. It adds 
> > supports for
> > the following operations:
> 
> it is a general patch, not special for derain, so I think we don't need 
> mention derain here,
> just explain it in general.
> 
> > 
> > 
> > 
> > 
> >  (1) Conv padding method: "SAME", "VALID" and "SAME_CLAMP_TO_EDGE"
> > 
> > 
> > 
> > 
> > These operations are all needed in derain filter. As we discussed before, 
> > the
> > "SAME_CLAMP_TO_EDGE" method is the same as dnn native padding method
> > in the current implementation. And the sr model generation code should be
> > So I sent a PR
> > (https://github.com/HighVoltageRocknRoll/sr/pull/4)to the original sr
> > repo(https://github.com/HighVoltageRocknRoll/sr).
> > 
> > 
> > 
> > From c0724bb304a6f4c3ca935cccda5b810e5c4eceb1 Mon Sep 17 00:00:00
> > 2001
> > From: Xuewei Meng <xwm...@pku.edu.cn>
> > Date: Wed, 8 May 2019 17:32:30 +0800
> > Subject: [PATCH] Add multiple padding method in dnn native
> > 
> > Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn>
> > ---
> >  libavfilter/dnn_backend_native.c | 52 ++++++++++++++++++++++++--------
> >  libavfilter/dnn_backend_native.h |  3 ++
> >  2 files changed, 43 insertions(+), 12 deletions(-)
> > 
> > diff --git a/libavfilter/dnn_backend_native.c 
> > b/libavfilter/dnn_backend_native.c
> > index 70d857f5f2..b7c0508d91 100644
> > --- a/libavfilter/dnn_backend_native.c
> > +++ b/libavfilter/dnn_backend_native.c
> > @@ -59,6 +59,12 @@ static DNNReturnType set_input_output_native(void
> > *model, DNNData *input, DNNDat
> >                  return DNN_ERROR;
> >              }
> >              cur_channels = conv_params->output_num;
> > +
> > +            if(conv_params->padding_method == VALID){
> > +                int pad_size = conv_params->kernel_size - 1;
> > +                cur_height -= pad_size;
> > +                cur_width -= pad_size;
> > +            }
> >              break;
> >          case DEPTH_TO_SPACE:
> >              depth_to_space_params = (DepthToSpaceParams
> > *)network->layers[layer].params;
> > @@ -75,6 +81,10 @@ static DNNReturnType set_input_output_native(void
> > *model, DNNData *input, DNNDat
> >          if (network->layers[layer].output){
> >              av_freep(&network->layers[layer].output);
> >          }
> > +
> > +        if(cur_height <= 0 || cur_width <= 0)
> > +            return DNN_ERROR;
> > +
> >          network->layers[layer].output = av_malloc(cur_height * cur_width *
> > cur_channels * sizeof(float));
> >          if (!network->layers[layer].output){
> >              return DNN_ERROR;
> > @@ -157,13 +167,14 @@ DNNModel *ff_dnn_load_model_native(const char
> > *model_filename)
> >                  ff_dnn_free_model_native(&model);
> >                  return NULL;
> >              }
> > +            conv_params->padding_method =
> > (int32_t)avio_rl32(model_file_context);
> >              conv_params->activation =
> > (int32_t)avio_rl32(model_file_context);
> >              conv_params->input_num =
> > (int32_t)avio_rl32(model_file_context);
> >              conv_params->output_num =
> > (int32_t)avio_rl32(model_file_context);
> >              conv_params->kernel_size =
> > (int32_t)avio_rl32(model_file_context);
> >              kernel_size = conv_params->input_num *
> > conv_params->output_num *
> >                            conv_params->kernel_size *
> > conv_params->kernel_size;
> > -            dnn_size += 16 + (kernel_size + conv_params->output_num <<
> > 2);
> > +            dnn_size += 20 + (kernel_size + conv_params->output_num <<
> > 2);
> >              if (dnn_size > file_size || conv_params->input_num <= 0 ||
> >                  conv_params->output_num <= 0 ||
> > conv_params->kernel_size <= 0){
> >                  avio_closep(&model_file_context);
> > @@ -221,23 +232,35 @@ DNNModel *ff_dnn_load_model_native(const char
> > *model_filename)
> > 
> >  static void convolve(const float *input, float *output, const
> > ConvolutionalParams *conv_params, int width, int height)
> >  {
> > -    int y, x, n_filter, ch, kernel_y, kernel_x;
> >      int radius = conv_params->kernel_size >> 1;
> >      int src_linesize = width * conv_params->input_num;
> >      int filter_linesize = conv_params->kernel_size *
> > conv_params->input_num;
> >      int filter_size = conv_params->kernel_size * filter_linesize;
> > +    int pad_size = (conv_params->padding_method == VALID) ?
> > (conv_params->kernel_size - 1) / 2 : 0;
> > 
> > -    for (y = 0; y < height; ++y){
> > -        for (x = 0; x < width; ++x){
> > -            for (n_filter = 0; n_filter < conv_params->output_num;
> > ++n_filter){
> > +    for (int y = pad_size; y < height - pad_size; ++y){
> > +        for (int x = pad_size; x < width - pad_size; ++x){
> > +            for (int n_filter = 0; n_filter < conv_params->output_num;
> > ++n_filter){
> >                  output[n_filter] = conv_params->biases[n_filter];
> > -                for (ch = 0; ch < conv_params->input_num; ++ch){
> > -                    for (kernel_y = 0; kernel_y <
> > conv_params->kernel_size; ++kernel_y){
> > -                        for (kernel_x = 0; kernel_x <
> > conv_params->kernel_size; ++kernel_x){
> > -                            output[n_filter] +=
> > input[CLAMP_TO_EDGE(y + kernel_y - radius, height) * src_linesize +
> > -
> > CLAMP_TO_EDGE(x + kernel_x - radius, width) * conv_params->input_num + ch]
> > *
> > -
> > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > -
> > kernel_x * conv_params->input_num + ch];
> > +
> > +                for (int ch = 0; ch < conv_params->input_num; ++ch){
> > +                    for (int kernel_y = 0; kernel_y <
> > conv_params->kernel_size; ++kernel_y){
> > +                        for (int kernel_x = 0; kernel_x <
> > conv_params->kernel_size; ++kernel_x){
> > +                            float input_pel;
> > +                            if(conv_params->padding_method ==
> > SAME_CLAMP_TO_EDGE){
> > +                                int y_pos = CLAMP_TO_EDGE(y +
> > kernel_y - radius, height);
> > +                                int x_pos = CLAMP_TO_EDGE(x +
> > kernel_x - radius, width);
> > +                                input_pel = input[y_pos * src_linesize
> > + x_pos * conv_params->input_num + ch];
> > +                            }else{
> > +                                int y_pos = y + kernel_y - radius;
> > +                                int x_pos = x + kernel_x - radius;
> > +                                input_pel = (x_pos < 0 || x_pos >=
> > width || y_pos < 0 || y_pos >= height) ? 0.0 :
> > +                                                   input[y_pos *
> > src_linesize + x_pos * conv_params->input_num + ch];
> > +                            }
> > +
> > +
> > +                            output[n_filter] += input_pel *
> > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > +
> > kernel_x * conv_params->input_num + ch];
> >                          }
> >                      }
> >                  }
> > @@ -308,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const
> > DNNModel *model)
> >              conv_params = (ConvolutionalParams
> > *)network->layers[layer].params;
> >              convolve(network->layers[layer - 1].output,
> > network->layers[layer].output, conv_params, cur_width, cur_height);
> >              cur_channels = conv_params->output_num;
> > +            if(conv_params->padding_method == VALID){
> > +                int pad_size = conv_params->kernel_size - 1;
> > +                cur_height -= pad_size;
> > +                cur_width -= pad_size;
> > +            }
> >              break;
> >          case DEPTH_TO_SPACE:
> >              depth_to_space_params = (DepthToSpaceParams
> > *)network->layers[layer].params;
> > diff --git a/libavfilter/dnn_backend_native.h 
> > b/libavfilter/dnn_backend_native.h
> > index 51d4cac955..a609e09754 100644
> > --- a/libavfilter/dnn_backend_native.h
> > +++ b/libavfilter/dnn_backend_native.h
> > @@ -34,6 +34,8 @@ typedef enum {INPUT, CONV, DEPTH_TO_SPACE}
> > DNNLayerType;
> > 
> >  typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
> > 
> > +typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingFunc;
> 
> DNNPaddingFunc might have conflict with the pad layer, how about rename to 
> DNNConvPaddingParam

Yeah, DNNConvPaddingParam is better

> 
> > +
> >  typedef struct Layer{
> >      DNNLayerType type;
> >      float *output;
> > @@ -43,6 +45,7 @@ typedef struct Layer{
> >  typedef struct ConvolutionalParams{
> >      int32_t input_num, output_num, kernel_size;
> >      DNNActivationFunc activation;
> > +    DNNPaddingFunc padding_method;
> >      float *kernel;
> >      float *biases;
> >  } ConvolutionalParams;
> > --
> > 2.17.1
> > 
> > 
> > 
> > 
> > _______________________________________________
> > ffmpeg-devel mailing list
> > ffmpeg-devel@ffmpeg.org
> > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> > 
> > To unsubscribe, visit link above, or email
> > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> 
> To unsubscribe, visit link above, or email
> ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel

To unsubscribe, visit link above, or email
ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".

Reply via email to