> 在 2019年5月8日,下午5:33,xwm...@pku.edu.cn 写道: > > > > > This patch is for the support of derain filter project in GSoC. It adds > supports for the following operations: > > > > > (1) Conv padding method: "SAME", "VALID" and "SAME_CLAMP_TO_EDGE" > > > > > These operations are all needed in derain filter. As we discussed before, the > "SAME_CLAMP_TO_EDGE" method is the same as dnn native padding method in the > current implementation. And the sr model generation code should be changed if > mutiple padding method supports added. So I sent a PR > (https://github.com/HighVoltageRocknRoll/sr/pull/4)to the original sr > repo(https://github.com/HighVoltageRocknRoll/sr). Cannot sure Sergey Lavrushkin is maintaining that repo, maybe Pedro Arthur can tick he.
> > > > From c0724bb304a6f4c3ca935cccda5b810e5c4eceb1 Mon Sep 17 00:00:00 2001 > From: Xuewei Meng <xwm...@pku.edu.cn> > Date: Wed, 8 May 2019 17:32:30 +0800 > Subject: [PATCH] Add multiple padding method in dnn native > > Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn> > --- > libavfilter/dnn_backend_native.c | 52 ++++++++++++++++++++++++-------- > libavfilter/dnn_backend_native.h | 3 ++ > 2 files changed, 43 insertions(+), 12 deletions(-) > > diff --git a/libavfilter/dnn_backend_native.c > b/libavfilter/dnn_backend_native.c > index 70d857f5f2..b7c0508d91 100644 > --- a/libavfilter/dnn_backend_native.c > +++ b/libavfilter/dnn_backend_native.c > @@ -59,6 +59,12 @@ static DNNReturnType set_input_output_native(void *model, > DNNData *input, DNNDat > return DNN_ERROR; > } > cur_channels = conv_params->output_num; > + > + if(conv_params->padding_method == VALID){ > + int pad_size = conv_params->kernel_size - 1; > + cur_height -= pad_size; > + cur_width -= pad_size; > + } > break; > case DEPTH_TO_SPACE: > depth_to_space_params = (DepthToSpaceParams > *)network->layers[layer].params; > @@ -75,6 +81,10 @@ static DNNReturnType set_input_output_native(void *model, > DNNData *input, DNNDat > if (network->layers[layer].output){ > av_freep(&network->layers[layer].output); > } > + > + if(cur_height <= 0 || cur_width <= 0) > + return DNN_ERROR; > + > network->layers[layer].output = av_malloc(cur_height * cur_width * > cur_channels * sizeof(float)); > if (!network->layers[layer].output){ > return DNN_ERROR; > @@ -157,13 +167,14 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > ff_dnn_free_model_native(&model); > return NULL; > } > + conv_params->padding_method = > (int32_t)avio_rl32(model_file_context); > conv_params->activation = (int32_t)avio_rl32(model_file_context); > conv_params->input_num = (int32_t)avio_rl32(model_file_context); > conv_params->output_num = (int32_t)avio_rl32(model_file_context); > conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); > kernel_size = conv_params->input_num * conv_params->output_num * > conv_params->kernel_size * conv_params->kernel_size; > - dnn_size += 16 + (kernel_size + conv_params->output_num << 2); > + dnn_size += 20 + (kernel_size + conv_params->output_num << 2); > if (dnn_size > file_size || conv_params->input_num <= 0 || > conv_params->output_num <= 0 || conv_params->kernel_size <= > 0){ > avio_closep(&model_file_context); > @@ -221,23 +232,35 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > > static void convolve(const float *input, float *output, const > ConvolutionalParams *conv_params, int width, int height) > { > - int y, x, n_filter, ch, kernel_y, kernel_x; > int radius = conv_params->kernel_size >> 1; > int src_linesize = width * conv_params->input_num; > int filter_linesize = conv_params->kernel_size * conv_params->input_num; > int filter_size = conv_params->kernel_size * filter_linesize; > + int pad_size = (conv_params->padding_method == VALID) ? > (conv_params->kernel_size - 1) / 2 : 0; > > - for (y = 0; y < height; ++y){ > - for (x = 0; x < width; ++x){ > - for (n_filter = 0; n_filter < conv_params->output_num; > ++n_filter){ > + for (int y = pad_size; y < height - pad_size; ++y){ > + for (int x = pad_size; x < width - pad_size; ++x){ > + for (int n_filter = 0; n_filter < conv_params->output_num; > ++n_filter){ > output[n_filter] = conv_params->biases[n_filter]; > - for (ch = 0; ch < conv_params->input_num; ++ch){ > - for (kernel_y = 0; kernel_y < conv_params->kernel_size; > ++kernel_y){ > - for (kernel_x = 0; kernel_x < > conv_params->kernel_size; ++kernel_x){ > - output[n_filter] += input[CLAMP_TO_EDGE(y + > kernel_y - radius, height) * src_linesize + > - CLAMP_TO_EDGE(x + > kernel_x - radius, width) * conv_params->input_num + ch] * > - conv_params->kernel[n_filter > * filter_size + kernel_y * filter_linesize + > - kernel_x > * conv_params->input_num + ch]; > + > + for (int ch = 0; ch < conv_params->input_num; ++ch){ > + for (int kernel_y = 0; kernel_y < > conv_params->kernel_size; ++kernel_y){ > + for (int kernel_x = 0; kernel_x < > conv_params->kernel_size; ++kernel_x){ > + float input_pel; > + if(conv_params->padding_method == > SAME_CLAMP_TO_EDGE){ > + int y_pos = CLAMP_TO_EDGE(y + kernel_y - > radius, height); > + int x_pos = CLAMP_TO_EDGE(x + kernel_x - > radius, width); > + input_pel = input[y_pos * src_linesize + > x_pos * conv_params->input_num + ch]; > + }else{ attention all the code style above section. : } else { and for (…) { > + int y_pos = y + kernel_y - radius; > + int x_pos = x + kernel_x - radius; > + input_pel = (x_pos < 0 || x_pos >= width || > y_pos < 0 || y_pos >= height) ? 0.0 : > + input[y_pos * > src_linesize + x_pos * conv_params->input_num + ch]; > + } > + > + > + output[n_filter] += input_pel * > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + > + > kernel_x * conv_params->input_num + ch]; > } > } > } > @@ -308,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel > *model) > conv_params = (ConvolutionalParams > *)network->layers[layer].params; > convolve(network->layers[layer - 1].output, > network->layers[layer].output, conv_params, cur_width, cur_height); > cur_channels = conv_params->output_num; > + if(conv_params->padding_method == VALID){ > + int pad_size = conv_params->kernel_size - 1; > + cur_height -= pad_size; > + cur_width -= pad_size; > + } > break; > case DEPTH_TO_SPACE: > depth_to_space_params = (DepthToSpaceParams > *)network->layers[layer].params; > diff --git a/libavfilter/dnn_backend_native.h > b/libavfilter/dnn_backend_native.h > index 51d4cac955..a609e09754 100644 > --- a/libavfilter/dnn_backend_native.h > +++ b/libavfilter/dnn_backend_native.h > @@ -34,6 +34,8 @@ typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType; > > typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc; > > +typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingFunc; > + > typedef struct Layer{ > DNNLayerType type; > float *output; > @@ -43,6 +45,7 @@ typedef struct Layer{ > typedef struct ConvolutionalParams{ > int32_t input_num, output_num, kernel_size; > DNNActivationFunc activation; > + DNNPaddingFunc padding_method; > float *kernel; > float *biases; > } ConvolutionalParams; > -- > 2.17.1 > > > > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe". _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".