> 在 2019年5月8日,下午5:33,xwm...@pku.edu.cn 写道:
> 
> 
> 
> 
> This patch is for the support of derain filter project in GSoC. It adds 
> supports for the following operations: 
> 
> 
> 
> 
> (1) Conv padding method: "SAME", "VALID" and "SAME_CLAMP_TO_EDGE"
> 
> 
> 
> 
> These operations are all needed in derain filter. As we discussed before, the 
> "SAME_CLAMP_TO_EDGE" method is the same as dnn native padding method in the 
> current implementation. And the sr model generation code should be changed if 
> mutiple padding method supports added. So I sent a PR 
> (https://github.com/HighVoltageRocknRoll/sr/pull/4)to the original sr 
> repo(https://github.com/HighVoltageRocknRoll/sr).
Cannot sure Sergey Lavrushkin is maintaining that repo, maybe Pedro Arthur can 
tick he.

> 
> 
> 
> From c0724bb304a6f4c3ca935cccda5b810e5c4eceb1 Mon Sep 17 00:00:00 2001
> From: Xuewei Meng <xwm...@pku.edu.cn>
> Date: Wed, 8 May 2019 17:32:30 +0800
> Subject: [PATCH] Add multiple padding method in dnn native
> 
> Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn>
> ---
> libavfilter/dnn_backend_native.c | 52 ++++++++++++++++++++++++--------
> libavfilter/dnn_backend_native.h |  3 ++
> 2 files changed, 43 insertions(+), 12 deletions(-)
> 
> diff --git a/libavfilter/dnn_backend_native.c 
> b/libavfilter/dnn_backend_native.c
> index 70d857f5f2..b7c0508d91 100644
> --- a/libavfilter/dnn_backend_native.c
> +++ b/libavfilter/dnn_backend_native.c
> @@ -59,6 +59,12 @@ static DNNReturnType set_input_output_native(void *model, 
> DNNData *input, DNNDat
>                 return DNN_ERROR;
>             }
>             cur_channels = conv_params->output_num;
> +
> +            if(conv_params->padding_method == VALID){
> +                int pad_size = conv_params->kernel_size - 1;
> +                cur_height -= pad_size;
> +                cur_width -= pad_size;
> +            }
>             break;
>         case DEPTH_TO_SPACE:
>             depth_to_space_params = (DepthToSpaceParams 
> *)network->layers[layer].params;
> @@ -75,6 +81,10 @@ static DNNReturnType set_input_output_native(void *model, 
> DNNData *input, DNNDat
>         if (network->layers[layer].output){
>             av_freep(&network->layers[layer].output);
>         }
> +
> +        if(cur_height <= 0 || cur_width <= 0)
> +            return DNN_ERROR; 
> +        
>         network->layers[layer].output = av_malloc(cur_height * cur_width * 
> cur_channels * sizeof(float));
>         if (!network->layers[layer].output){
>             return DNN_ERROR;
> @@ -157,13 +167,14 @@ DNNModel *ff_dnn_load_model_native(const char 
> *model_filename)
>                 ff_dnn_free_model_native(&model);
>                 return NULL;
>             }
> +            conv_params->padding_method = 
> (int32_t)avio_rl32(model_file_context);
>             conv_params->activation = (int32_t)avio_rl32(model_file_context);
>             conv_params->input_num = (int32_t)avio_rl32(model_file_context);
>             conv_params->output_num = (int32_t)avio_rl32(model_file_context);
>             conv_params->kernel_size = (int32_t)avio_rl32(model_file_context);
>             kernel_size = conv_params->input_num * conv_params->output_num *
>                           conv_params->kernel_size * conv_params->kernel_size;
> -            dnn_size += 16 + (kernel_size + conv_params->output_num << 2);
> +            dnn_size += 20 + (kernel_size + conv_params->output_num << 2);
>             if (dnn_size > file_size || conv_params->input_num <= 0 ||
>                 conv_params->output_num <= 0 || conv_params->kernel_size <= 
> 0){
>                 avio_closep(&model_file_context);
> @@ -221,23 +232,35 @@ DNNModel *ff_dnn_load_model_native(const char 
> *model_filename)
> 
> static void convolve(const float *input, float *output, const 
> ConvolutionalParams *conv_params, int width, int height)
> {
> -    int y, x, n_filter, ch, kernel_y, kernel_x;
>     int radius = conv_params->kernel_size >> 1;
>     int src_linesize = width * conv_params->input_num;
>     int filter_linesize = conv_params->kernel_size * conv_params->input_num;
>     int filter_size = conv_params->kernel_size * filter_linesize;
> +    int pad_size = (conv_params->padding_method == VALID) ? 
> (conv_params->kernel_size - 1) / 2 : 0;
> 
> -    for (y = 0; y < height; ++y){
> -        for (x = 0; x < width; ++x){
> -            for (n_filter = 0; n_filter < conv_params->output_num; 
> ++n_filter){
> +    for (int y = pad_size; y < height - pad_size; ++y){
> +        for (int x = pad_size; x < width - pad_size; ++x){
> +            for (int n_filter = 0; n_filter < conv_params->output_num; 
> ++n_filter){
>                 output[n_filter] = conv_params->biases[n_filter];
> -                for (ch = 0; ch < conv_params->input_num; ++ch){
> -                    for (kernel_y = 0; kernel_y < conv_params->kernel_size; 
> ++kernel_y){
> -                        for (kernel_x = 0; kernel_x < 
> conv_params->kernel_size; ++kernel_x){
> -                            output[n_filter] += input[CLAMP_TO_EDGE(y + 
> kernel_y - radius, height) * src_linesize +
> -                                                      CLAMP_TO_EDGE(x + 
> kernel_x - radius, width) * conv_params->input_num + ch] *
> -                                                conv_params->kernel[n_filter 
> * filter_size + kernel_y * filter_linesize +
> -                                                                    kernel_x 
> * conv_params->input_num + ch];
> +
> +                for (int ch = 0; ch < conv_params->input_num; ++ch){
> +                    for (int kernel_y = 0; kernel_y < 
> conv_params->kernel_size; ++kernel_y){
> +                        for (int kernel_x = 0; kernel_x < 
> conv_params->kernel_size; ++kernel_x){
> +                            float input_pel;
> +                            if(conv_params->padding_method == 
> SAME_CLAMP_TO_EDGE){
> +                                int y_pos = CLAMP_TO_EDGE(y + kernel_y - 
> radius, height);
> +                                int x_pos = CLAMP_TO_EDGE(x + kernel_x - 
> radius, width);
> +                                input_pel = input[y_pos * src_linesize + 
> x_pos * conv_params->input_num + ch];
> +                            }else{
attention all the code style above section. : } else { and  for (…) {
> +                                int y_pos = y + kernel_y - radius;
> +                                int x_pos = x + kernel_x - radius;
> +                                input_pel = (x_pos < 0 || x_pos >= width || 
> y_pos < 0 || y_pos >= height) ? 0.0 : 
> +                                                   input[y_pos * 
> src_linesize + x_pos * conv_params->input_num + ch];
> +                            }
> +
> +
> +                            output[n_filter] += input_pel * 
> conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> +                                                                             
>    kernel_x * conv_params->input_num + ch];
>                         }
>                     }
>                 }
> @@ -308,6 +331,11 @@ DNNReturnType ff_dnn_execute_model_native(const DNNModel 
> *model)
>             conv_params = (ConvolutionalParams 
> *)network->layers[layer].params;
>             convolve(network->layers[layer - 1].output, 
> network->layers[layer].output, conv_params, cur_width, cur_height);
>             cur_channels = conv_params->output_num;
> +            if(conv_params->padding_method == VALID){
> +                int pad_size = conv_params->kernel_size - 1;
> +                cur_height -= pad_size;
> +                cur_width -= pad_size;
> +            }
>             break;
>         case DEPTH_TO_SPACE:
>             depth_to_space_params = (DepthToSpaceParams 
> *)network->layers[layer].params;
> diff --git a/libavfilter/dnn_backend_native.h 
> b/libavfilter/dnn_backend_native.h
> index 51d4cac955..a609e09754 100644
> --- a/libavfilter/dnn_backend_native.h
> +++ b/libavfilter/dnn_backend_native.h
> @@ -34,6 +34,8 @@ typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType;
> 
> typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
> 
> +typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingFunc;
> +
> typedef struct Layer{
>     DNNLayerType type;
>     float *output;
> @@ -43,6 +45,7 @@ typedef struct Layer{
> typedef struct ConvolutionalParams{
>     int32_t input_num, output_num, kernel_size;
>     DNNActivationFunc activation;
> +    DNNPaddingFunc padding_method;
>     float *kernel;
>     float *biases;
> } ConvolutionalParams;
> -- 
> 2.17.1
> 
> 
> 
> 
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> 
> To unsubscribe, visit link above, or email
> ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".



_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel

To unsubscribe, visit link above, or email
ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".

Reply via email to