> -----原始邮件-----
> 发件人: "myp...@gmail.com" <myp...@gmail.com>
> 发送时间: 2019-04-28 18:28:21 (星期日)
> 收件人: "FFmpeg development discussions and patches" <ffmpeg-devel@ffmpeg.org>
> 抄送:
> 主题: Re: [FFmpeg-devel] [PATCH] libavfilter: Add more operation supports in
> FFmpeg dnn native mode.
>
> On Sun, Apr 28, 2019 at 5:27 PM <xwm...@pku.edu.cn> wrote:
> >
> > This patch is for the support of derain filter project in GSoC. It adds
> > supports for the following operations:
> >
> >
> >
> >
> > (1) Conv padding method: "SAME" and "VALID"
> >
> > (2) Dilation
> >
> > (3) Activation: "NONE" and "LEAKY_RELU"
> >
> >
> >
> >
> > These operations are all needed in derain filter. And if modify the dnn
> > native mode in FFmpeg, the generation process of Super Resolution model
> > should be changed accordingly, e.g. add padding method parameter (= 0) and
> > dilation parameter (= 1).
> >
> >
> >
> >
> > In addition, I have a question about the Super Resulotion implementation.
> > The model training process of SR uses "VALID" method. According to my
> > understanding of "VALID" mode in tensorflow, the size of output image
> > should be smaller than the current design in SR. Because pixels near the
> > boundary are not processed in "VALID" mode, however, these unprocessed
> > pixels are filled with adjacent pixels in current dnn native mode. I wonder
> > why to do like this here.
> >
> >
> >
> >
> > From 4d92ef21a5acf064122c51f442d0e2f5437b3343 Mon Sep 17 00:00:00 2001
> > From: Xuewei Meng <xwm...@pku.edu.cn>
> > Date: Sun, 28 Apr 2019 17:21:35 +0800
> > Subject: [PATCH] Add operation supports in dnn_native
> >
> > Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn>
> > ---
> > libavfilter/dnn_backend_native.c | 36 +++++++++++++++++++++-----------
> > libavfilter/dnn_backend_native.h | 6 +++++-
> > 2 files changed, 29 insertions(+), 13 deletions(-)
> >
> > diff --git a/libavfilter/dnn_backend_native.c
> > b/libavfilter/dnn_backend_native.c
> > index 70d857f5f2..0e3ef5d64d 100644
> > --- a/libavfilter/dnn_backend_native.c
> > +++ b/libavfilter/dnn_backend_native.c
> > @@ -157,13 +157,15 @@ DNNModel *ff_dnn_load_model_native(const char
> > *model_filename)
> > ff_dnn_free_model_native(&model);
> > return NULL;
> > }
> > + conv_params->dilation = (int32_t)avio_rl32(model_file_context);
> > + conv_params->padding_method =
> > (int32_t)avio_rl32(model_file_context);
> > conv_params->activation =
> > (int32_t)avio_rl32(model_file_context);
> > conv_params->input_num =
> > (int32_t)avio_rl32(model_file_context);
> > conv_params->output_num =
> > (int32_t)avio_rl32(model_file_context);
> > conv_params->kernel_size =
> > (int32_t)avio_rl32(model_file_context);
> > kernel_size = conv_params->input_num * conv_params->output_num
> > *
> > conv_params->kernel_size *
> > conv_params->kernel_size;
> > - dnn_size += 16 + (kernel_size + conv_params->output_num << 2);
> > + dnn_size += 24 + (kernel_size + conv_params->output_num << 2);
> Add some comments for the number 16 or 24 ?
dnn_size is the bytes of dnn model parameters. Because of the adding of
parameter "conv_params->dilation" and "conv_params->padding_method", dnn_size
shoule be added by 8.
> > if (dnn_size > file_size || conv_params->input_num <= 0 ||
> > conv_params->output_num <= 0 || conv_params->kernel_size
> > <= 0){
> > avio_closep(&model_file_context);
> > @@ -221,23 +223,28 @@ DNNModel *ff_dnn_load_model_native(const char
> > *model_filename)
> >
> > static void convolve(const float *input, float *output, const
> > ConvolutionalParams *conv_params, int width, int height)
> > {
> > - int y, x, n_filter, ch, kernel_y, kernel_x;
> Why?
Because I think it is better to definite the variables when using them in for
loop.
> > int radius = conv_params->kernel_size >> 1;
> > int src_linesize = width * conv_params->input_num;
> > int filter_linesize = conv_params->kernel_size *
> > conv_params->input_num;
> > int filter_size = conv_params->kernel_size * filter_linesize;
> > + int pad_size = (conv_params->padding_method == VALID) ?
> > (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
> >
> > - for (y = 0; y < height; ++y){
> > - for (x = 0; x < width; ++x){
> > - for (n_filter = 0; n_filter < conv_params->output_num;
> > ++n_filter){
> > + for (int y = pad_size; y < height - pad_size; ++y){
> > + for (int x = pad_size; x < width - pad_size; ++x){
> > + for (int n_filter = 0; n_filter < conv_params->output_num;
> > ++n_filter){
> > output[n_filter] = conv_params->biases[n_filter];
> > - for (ch = 0; ch < conv_params->input_num; ++ch){
> > - for (kernel_y = 0; kernel_y <
> > conv_params->kernel_size; ++kernel_y){
> > - for (kernel_x = 0; kernel_x <
> > conv_params->kernel_size; ++kernel_x){
> > - output[n_filter] += input[CLAMP_TO_EDGE(y +
> > kernel_y - radius, height) * src_linesize +
> > - CLAMP_TO_EDGE(x +
> > kernel_x - radius, width) * conv_params->input_num + ch] *
> > -
> > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > -
> > kernel_x * conv_params->input_num + ch];
> > +
> > + for (int ch = 0; ch < conv_params->input_num; ++ch){
> > + for (int kernel_y = 0; kernel_y <
> > conv_params->kernel_size; ++kernel_y){
> > + for (int kernel_x = 0; kernel_x <
> > conv_params->kernel_size; ++kernel_x){
> > + int y_pos = y + (kernel_y - radius) *
> > conv_params->dilation;
> > + int x_pos = x + (kernel_x - radius) *
> > conv_params->dilation;
> > +
> > + float input_pel = (x_pos < 0 || x_pos >= width
> > || y_pos < 0 || y_pos >= height) ? 0.0 :
> > + input[y_pos * src_linesize
> > + x_pos * conv_params->input_num + ch];
> > +
> > + output[n_filter] += input_pel *
> > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> > +
> > kernel_x * conv_params->input_num + ch];
> > }
> > }
> > }
> > @@ -250,6 +257,11 @@ static void convolve(const float *input, float
> > *output, const ConvolutionalParam
> > break;
> > case SIGMOID:
> > output[n_filter] = 1.0f / (1.0f +
> > exp(-output[n_filter]));
> > + break;
> > + case NONE:
> > + break;
> > + case LEAKY_RELU:
> > + output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2
> > * FFMIN(output[n_filter], 0.0);
> > }
> > }
> > output += conv_params->output_num;
> > diff --git a/libavfilter/dnn_backend_native.h
> > b/libavfilter/dnn_backend_native.h
> > index 51d4cac955..f7d4eb823b 100644
> > --- a/libavfilter/dnn_backend_native.h
> > +++ b/libavfilter/dnn_backend_native.h
> > @@ -32,7 +32,9 @@
> >
> > typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType;
> >
> > -typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
> > +typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
> > +
> > +typedef enum {VALID, SAME} DNNPaddingFunc;
> >
> > typedef struct Layer{
> > DNNLayerType type;
> > @@ -43,6 +45,8 @@ typedef struct Layer{
> > typedef struct ConvolutionalParams{
> > int32_t input_num, output_num, kernel_size;
> > DNNActivationFunc activation;
> > + DNNPaddingFunc padding_method;
> > + int32_t dilation;
> > float *kernel;
> > float *biases;
> > } ConvolutionalParams;
> > --
> > 2.17.1
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
>
> To unsubscribe, visit link above, or email
> ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email
ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".