On Sun, Apr 28, 2019 at 5:27 PM <xwm...@pku.edu.cn> wrote:
>
> This patch is for the support of derain filter project in GSoC. It adds 
> supports for the following operations:
>
>
>
>
>  (1) Conv padding method: "SAME" and "VALID"
>
>  (2) Dilation
>
>  (3) Activation: "NONE" and "LEAKY_RELU"
>
>
>
>
> These operations are all needed in derain filter. And if modify the dnn 
> native mode in FFmpeg, the generation process of Super Resolution model 
> should be changed accordingly, e.g. add padding method parameter (= 0) and 
> dilation parameter (= 1).
>
>
>
>
> In addition, I have a question about the Super Resulotion implementation. The 
> model training process of SR uses "VALID" method. According to my 
> understanding of "VALID" mode in tensorflow, the size of output image should 
> be smaller than the current design in SR. Because pixels near the boundary 
> are not processed in "VALID" mode, however, these unprocessed pixels are 
> filled with adjacent pixels in current dnn native mode. I wonder why to do 
> like this here.
>
>
>
>
> From 4d92ef21a5acf064122c51f442d0e2f5437b3343 Mon Sep 17 00:00:00 2001
> From: Xuewei Meng <xwm...@pku.edu.cn>
> Date: Sun, 28 Apr 2019 17:21:35 +0800
> Subject: [PATCH] Add operation supports in dnn_native
>
> Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn>
> ---
>  libavfilter/dnn_backend_native.c | 36 +++++++++++++++++++++-----------
>  libavfilter/dnn_backend_native.h |  6 +++++-
>  2 files changed, 29 insertions(+), 13 deletions(-)
>
> diff --git a/libavfilter/dnn_backend_native.c 
> b/libavfilter/dnn_backend_native.c
> index 70d857f5f2..0e3ef5d64d 100644
> --- a/libavfilter/dnn_backend_native.c
> +++ b/libavfilter/dnn_backend_native.c
> @@ -157,13 +157,15 @@ DNNModel *ff_dnn_load_model_native(const char 
> *model_filename)
>                  ff_dnn_free_model_native(&model);
>                  return NULL;
>              }
> +            conv_params->dilation = (int32_t)avio_rl32(model_file_context);
> +            conv_params->padding_method = 
> (int32_t)avio_rl32(model_file_context);
>              conv_params->activation = (int32_t)avio_rl32(model_file_context);
>              conv_params->input_num = (int32_t)avio_rl32(model_file_context);
>              conv_params->output_num = (int32_t)avio_rl32(model_file_context);
>              conv_params->kernel_size = 
> (int32_t)avio_rl32(model_file_context);
>              kernel_size = conv_params->input_num * conv_params->output_num *
>                            conv_params->kernel_size * 
> conv_params->kernel_size;
> -            dnn_size += 16 + (kernel_size + conv_params->output_num << 2);
> +            dnn_size += 24 + (kernel_size + conv_params->output_num << 2);
Add some comments for the number 16 or 24 ?
>              if (dnn_size > file_size || conv_params->input_num <= 0 ||
>                  conv_params->output_num <= 0 || conv_params->kernel_size <= 
> 0){
>                  avio_closep(&model_file_context);
> @@ -221,23 +223,28 @@ DNNModel *ff_dnn_load_model_native(const char 
> *model_filename)
>
>  static void convolve(const float *input, float *output, const 
> ConvolutionalParams *conv_params, int width, int height)
>  {
> -    int y, x, n_filter, ch, kernel_y, kernel_x;
Why?
>      int radius = conv_params->kernel_size >> 1;
>      int src_linesize = width * conv_params->input_num;
>      int filter_linesize = conv_params->kernel_size * conv_params->input_num;
>      int filter_size = conv_params->kernel_size * filter_linesize;
> +    int pad_size = (conv_params->padding_method == VALID) ? 
> (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0;
>
> -    for (y = 0; y < height; ++y){
> -        for (x = 0; x < width; ++x){
> -            for (n_filter = 0; n_filter < conv_params->output_num; 
> ++n_filter){
> +    for (int y = pad_size; y < height - pad_size; ++y){
> +        for (int x = pad_size; x < width - pad_size; ++x){
> +            for (int n_filter = 0; n_filter < conv_params->output_num; 
> ++n_filter){
>                  output[n_filter] = conv_params->biases[n_filter];
> -                for (ch = 0; ch < conv_params->input_num; ++ch){
> -                    for (kernel_y = 0; kernel_y < conv_params->kernel_size; 
> ++kernel_y){
> -                        for (kernel_x = 0; kernel_x < 
> conv_params->kernel_size; ++kernel_x){
> -                            output[n_filter] += input[CLAMP_TO_EDGE(y + 
> kernel_y - radius, height) * src_linesize +
> -                                                      CLAMP_TO_EDGE(x + 
> kernel_x - radius, width) * conv_params->input_num + ch] *
> -                                                conv_params->kernel[n_filter 
> * filter_size + kernel_y * filter_linesize +
> -                                                                    kernel_x 
> * conv_params->input_num + ch];
> +
> +                for (int ch = 0; ch < conv_params->input_num; ++ch){
> +                    for (int kernel_y = 0; kernel_y < 
> conv_params->kernel_size; ++kernel_y){
> +                        for (int kernel_x = 0; kernel_x < 
> conv_params->kernel_size; ++kernel_x){
> +                            int y_pos = y + (kernel_y - radius) * 
> conv_params->dilation;
> +                            int x_pos = x + (kernel_x - radius) * 
> conv_params->dilation;
> +
> +                            float input_pel = (x_pos < 0 || x_pos >= width 
> || y_pos < 0 || y_pos >= height) ? 0.0 :
> +                                               input[y_pos * src_linesize + 
> x_pos * conv_params->input_num + ch];
> +
> +                            output[n_filter] += input_pel * 
> conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize +
> +                                                                             
>    kernel_x * conv_params->input_num + ch];
>                          }
>                      }
>                  }
> @@ -250,6 +257,11 @@ static void convolve(const float *input, float *output, 
> const ConvolutionalParam
>                      break;
>                  case SIGMOID:
>                      output[n_filter] = 1.0f / (1.0f + 
> exp(-output[n_filter]));
> +                    break;
> +                case NONE:
> +                    break;
> +                case LEAKY_RELU:
> +                    output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * 
> FFMIN(output[n_filter], 0.0);
>                  }
>              }
>              output += conv_params->output_num;
> diff --git a/libavfilter/dnn_backend_native.h 
> b/libavfilter/dnn_backend_native.h
> index 51d4cac955..f7d4eb823b 100644
> --- a/libavfilter/dnn_backend_native.h
> +++ b/libavfilter/dnn_backend_native.h
> @@ -32,7 +32,9 @@
>
>  typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType;
>
> -typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc;
> +typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc;
> +
> +typedef enum {VALID, SAME} DNNPaddingFunc;
>
>  typedef struct Layer{
>      DNNLayerType type;
> @@ -43,6 +45,8 @@ typedef struct Layer{
>  typedef struct ConvolutionalParams{
>      int32_t input_num, output_num, kernel_size;
>      DNNActivationFunc activation;
> +    DNNPaddingFunc padding_method;
> +    int32_t dilation;
>      float *kernel;
>      float *biases;
>  } ConvolutionalParams;
> --
> 2.17.1
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel

To unsubscribe, visit link above, or email
ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".

Reply via email to