On Sun, Apr 28, 2019 at 5:27 PM <xwm...@pku.edu.cn> wrote: > > This patch is for the support of derain filter project in GSoC. It adds > supports for the following operations: > > > > > (1) Conv padding method: "SAME" and "VALID" > > (2) Dilation > > (3) Activation: "NONE" and "LEAKY_RELU" > > > > > These operations are all needed in derain filter. And if modify the dnn > native mode in FFmpeg, the generation process of Super Resolution model > should be changed accordingly, e.g. add padding method parameter (= 0) and > dilation parameter (= 1). > > > > > In addition, I have a question about the Super Resulotion implementation. The > model training process of SR uses "VALID" method. According to my > understanding of "VALID" mode in tensorflow, the size of output image should > be smaller than the current design in SR. Because pixels near the boundary > are not processed in "VALID" mode, however, these unprocessed pixels are > filled with adjacent pixels in current dnn native mode. I wonder why to do > like this here. > > > > > From 4d92ef21a5acf064122c51f442d0e2f5437b3343 Mon Sep 17 00:00:00 2001 > From: Xuewei Meng <xwm...@pku.edu.cn> > Date: Sun, 28 Apr 2019 17:21:35 +0800 > Subject: [PATCH] Add operation supports in dnn_native > > Signed-off-by: Xuewei Meng <xwm...@pku.edu.cn> > --- > libavfilter/dnn_backend_native.c | 36 +++++++++++++++++++++----------- > libavfilter/dnn_backend_native.h | 6 +++++- > 2 files changed, 29 insertions(+), 13 deletions(-) > > diff --git a/libavfilter/dnn_backend_native.c > b/libavfilter/dnn_backend_native.c > index 70d857f5f2..0e3ef5d64d 100644 > --- a/libavfilter/dnn_backend_native.c > +++ b/libavfilter/dnn_backend_native.c > @@ -157,13 +157,15 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > ff_dnn_free_model_native(&model); > return NULL; > } > + conv_params->dilation = (int32_t)avio_rl32(model_file_context); > + conv_params->padding_method = > (int32_t)avio_rl32(model_file_context); > conv_params->activation = (int32_t)avio_rl32(model_file_context); > conv_params->input_num = (int32_t)avio_rl32(model_file_context); > conv_params->output_num = (int32_t)avio_rl32(model_file_context); > conv_params->kernel_size = > (int32_t)avio_rl32(model_file_context); > kernel_size = conv_params->input_num * conv_params->output_num * > conv_params->kernel_size * > conv_params->kernel_size; > - dnn_size += 16 + (kernel_size + conv_params->output_num << 2); > + dnn_size += 24 + (kernel_size + conv_params->output_num << 2); Add some comments for the number 16 or 24 ? > if (dnn_size > file_size || conv_params->input_num <= 0 || > conv_params->output_num <= 0 || conv_params->kernel_size <= > 0){ > avio_closep(&model_file_context); > @@ -221,23 +223,28 @@ DNNModel *ff_dnn_load_model_native(const char > *model_filename) > > static void convolve(const float *input, float *output, const > ConvolutionalParams *conv_params, int width, int height) > { > - int y, x, n_filter, ch, kernel_y, kernel_x; Why? > int radius = conv_params->kernel_size >> 1; > int src_linesize = width * conv_params->input_num; > int filter_linesize = conv_params->kernel_size * conv_params->input_num; > int filter_size = conv_params->kernel_size * filter_linesize; > + int pad_size = (conv_params->padding_method == VALID) ? > (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > > - for (y = 0; y < height; ++y){ > - for (x = 0; x < width; ++x){ > - for (n_filter = 0; n_filter < conv_params->output_num; > ++n_filter){ > + for (int y = pad_size; y < height - pad_size; ++y){ > + for (int x = pad_size; x < width - pad_size; ++x){ > + for (int n_filter = 0; n_filter < conv_params->output_num; > ++n_filter){ > output[n_filter] = conv_params->biases[n_filter]; > - for (ch = 0; ch < conv_params->input_num; ++ch){ > - for (kernel_y = 0; kernel_y < conv_params->kernel_size; > ++kernel_y){ > - for (kernel_x = 0; kernel_x < > conv_params->kernel_size; ++kernel_x){ > - output[n_filter] += input[CLAMP_TO_EDGE(y + > kernel_y - radius, height) * src_linesize + > - CLAMP_TO_EDGE(x + > kernel_x - radius, width) * conv_params->input_num + ch] * > - conv_params->kernel[n_filter > * filter_size + kernel_y * filter_linesize + > - kernel_x > * conv_params->input_num + ch]; > + > + for (int ch = 0; ch < conv_params->input_num; ++ch){ > + for (int kernel_y = 0; kernel_y < > conv_params->kernel_size; ++kernel_y){ > + for (int kernel_x = 0; kernel_x < > conv_params->kernel_size; ++kernel_x){ > + int y_pos = y + (kernel_y - radius) * > conv_params->dilation; > + int x_pos = x + (kernel_x - radius) * > conv_params->dilation; > + > + float input_pel = (x_pos < 0 || x_pos >= width > || y_pos < 0 || y_pos >= height) ? 0.0 : > + input[y_pos * src_linesize + > x_pos * conv_params->input_num + ch]; > + > + output[n_filter] += input_pel * > conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + > + > kernel_x * conv_params->input_num + ch]; > } > } > } > @@ -250,6 +257,11 @@ static void convolve(const float *input, float *output, > const ConvolutionalParam > break; > case SIGMOID: > output[n_filter] = 1.0f / (1.0f + > exp(-output[n_filter])); > + break; > + case NONE: > + break; > + case LEAKY_RELU: > + output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * > FFMIN(output[n_filter], 0.0); > } > } > output += conv_params->output_num; > diff --git a/libavfilter/dnn_backend_native.h > b/libavfilter/dnn_backend_native.h > index 51d4cac955..f7d4eb823b 100644 > --- a/libavfilter/dnn_backend_native.h > +++ b/libavfilter/dnn_backend_native.h > @@ -32,7 +32,9 @@ > > typedef enum {INPUT, CONV, DEPTH_TO_SPACE} DNNLayerType; > > -typedef enum {RELU, TANH, SIGMOID} DNNActivationFunc; > +typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; > + > +typedef enum {VALID, SAME} DNNPaddingFunc; > > typedef struct Layer{ > DNNLayerType type; > @@ -43,6 +45,8 @@ typedef struct Layer{ > typedef struct ConvolutionalParams{ > int32_t input_num, output_num, kernel_size; > DNNActivationFunc activation; > + DNNPaddingFunc padding_method; > + int32_t dilation; > float *kernel; > float *biases; > } ConvolutionalParams; > -- > 2.17.1 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".