This commit adds handling for cases where an error may occur, clearing the allocated memory resources.
Signed-off-by: Shubhanshu Saxena <shubhanshu....@gmail.com> --- libavfilter/dnn/dnn_backend_tf.c | 100 +++++++++++++++++++++++-------- 1 file changed, 74 insertions(+), 26 deletions(-) diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c index 5d34da5db1..31746deef4 100644 --- a/libavfilter/dnn/dnn_backend_tf.c +++ b/libavfilter/dnn/dnn_backend_tf.c @@ -114,14 +114,18 @@ static tf_infer_request* tf_create_inference_request(void) static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue) { + TFModel *tf_model = task->model; + TFContext *ctx = &tf_model->ctx; InferenceItem *inference = av_malloc(sizeof(*inference)); if (!inference) { + av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for InferenceItem\n"); return DNN_ERROR; } task->inference_todo = 1; task->inference_done = 0; inference->task = task; if (ff_queue_push_back(inference_queue, inference) < 0) { + av_log(ctx, AV_LOG_ERROR, "Failed to push back inference_queue.\n"); av_freep(&inference); return DNN_ERROR; } @@ -232,14 +236,15 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu if (!in_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto final; } out_frame = av_frame_alloc(); if (!out_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output frame\n"); - av_frame_free(&in_frame); - return DNN_ERROR; + ret = DNN_ERROR; + goto final; } in_frame->width = input_width; @@ -256,19 +261,22 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto final; } request = ff_safe_queue_pop_front(tf_model->request_queue); if (!request) { av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); - return DNN_ERROR; + ret = DNN_ERROR; + goto final; } ret = execute_model_tf(request, tf_model->inference_queue); *output_width = out_frame->width; *output_height = out_frame->height; +final: av_frame_free(&out_frame); av_frame_free(&in_frame); return ret; @@ -788,18 +796,13 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ //parse options av_opt_set_defaults(&ctx); if (av_opt_set_from_string(&ctx, options, NULL, "=", "&") < 0) { - av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); - av_freep(&tf_model); - av_freep(&model); - return NULL; + av_log(&ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); + goto err; } if (load_tf_model(tf_model, model_filename) != DNN_SUCCESS){ if (load_native_model(tf_model, model_filename) != DNN_SUCCESS){ - av_freep(&tf_model); - av_freep(&model); - - return NULL; + goto err; } } @@ -808,14 +811,34 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ } tf_model->request_queue = ff_safe_queue_create(); + if (!tf_model->request_queue) { + goto err; + } for (int i = 0; i < ctx->options.nireq; i++) { RequestItem *item = av_mallocz(sizeof(*item)); + if (!item) { + goto err; + } item->infer_request = tf_create_inference_request(); - ff_safe_queue_push_back(tf_model->request_queue, item); + if (!item->infer_request) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for TensorFlow inference request\n"); + av_freep(&item); + goto err; + } + + if (ff_safe_queue_push_back(tf_model->request_queue, item) < 0) { + av_freep(&item->infer_request); + av_freep(&item); + goto err; + } } tf_model->inference_queue = ff_queue_create(); + if (!tf_model->inference_queue) { + goto err; + } + model->model = tf_model; model->get_input = &get_input_tf; model->get_output = &get_output_tf; @@ -824,6 +847,9 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ model->func_type = func_type; return model; +err: + ff_dnn_free_model_tf(&model); + return NULL; } static DNNReturnType fill_model_input_tf(TFModel *tf_model, RequestItem *request) { @@ -838,24 +864,31 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, RequestItem *request task = inference->task; request->inference = inference; - if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) - return DNN_ERROR; + if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) { + goto err; + } infer_request = request->infer_request; input.height = task->in_frame->height; input.width = task->in_frame->width; infer_request->tf_input = av_malloc(sizeof(TF_Output)); + if (!infer_request->tf_input) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); + goto err; + } + infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name); if (!infer_request->tf_input->oper){ av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); - return DNN_ERROR; + goto err; } infer_request->tf_input->index = 0; + infer_request->input_tensor = allocate_input_tensor(&input); if (!infer_request->input_tensor){ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); - return DNN_ERROR; + goto err; } input.data = (float *)TF_TensorData(infer_request->input_tensor); @@ -880,27 +913,35 @@ static DNNReturnType fill_model_input_tf(TFModel *tf_model, RequestItem *request infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output)); if (infer_request->tf_outputs == NULL) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); - return DNN_ERROR; + goto err; } infer_request->output_tensors = av_mallocz_array(task->nb_output, sizeof(*infer_request->output_tensors)); if (!infer_request->output_tensors) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); - return DNN_ERROR; + goto err; } - for (int i = 0; i < task->nb_output; ++i) { infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]); if (!infer_request->tf_outputs[i].oper) { av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); - return DNN_ERROR; + goto err; } infer_request->tf_outputs[i].index = 0; } return DNN_SUCCESS; +err: + for (uint32_t i = 0; i < task->nb_output; ++i) { + if (infer_request->output_tensors[i]) { + TF_DeleteTensor(infer_request->output_tensors[i]); + } + } + tf_free_request(infer_request); + return DNN_ERROR; } + static void infer_completion_callback(void *args) { RequestItem *request = args; InferenceItem *inference = request->inference; @@ -912,9 +953,8 @@ static void infer_completion_callback(void *args) { outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); if (!outputs) { - tf_free_request(infer_request); av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); - return; + goto final; } for (uint32_t i = 0; i < task->nb_output; ++i) { @@ -952,7 +992,7 @@ static void infer_completion_callback(void *args) { } } av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); - return; + goto final; } for (uint32_t i = 0; i < task->nb_output; ++i) { if (infer_request->output_tensors[i]) { @@ -960,9 +1000,13 @@ static void infer_completion_callback(void *args) { } } task->inference_done++; +final: tf_free_request(infer_request); av_freep(&outputs); - ff_safe_queue_push_back(tf_model->request_queue, request); + + if (ff_safe_queue_push_back(tf_model->request_queue, request) < 0) { + av_log(ctx, AV_LOG_ERROR, "Failed to push back request_queue.\n"); + } } static DNNReturnType execute_model_tf(RequestItem *request, Queue *inference_queue) @@ -974,6 +1018,10 @@ static DNNReturnType execute_model_tf(RequestItem *request, Queue *inference_que TaskItem *task; inference = ff_queue_peek_front(inference_queue); + if (!inference) { + av_log(NULL, AV_LOG_ERROR, "Failed to get inference item\n"); + return DNN_ERROR; + } task = inference->task; tf_model = task->model; ctx = &tf_model->ctx; -- 2.25.1 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".