This commit adds RequestItem and rearranges the existing sync execution mechanism to use request-based execution. It will help in adding async functionality to the TensorFlow backend later.
Signed-off-by: Shubhanshu Saxena <shubhanshu....@gmail.com> --- libavfilter/dnn/dnn_backend_tf.c | 297 +++++++++++++++++++++---------- 1 file changed, 206 insertions(+), 91 deletions(-) diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c index 4c16c2bdb0..793b108e55 100644 --- a/libavfilter/dnn/dnn_backend_tf.c +++ b/libavfilter/dnn/dnn_backend_tf.c @@ -35,10 +35,13 @@ #include "dnn_backend_native_layer_maximum.h" #include "dnn_io_proc.h" #include "dnn_backend_common.h" +#include "safe_queue.h" +#include "queue.h" #include <tensorflow/c/c_api.h> typedef struct TFOptions{ char *sess_config; + uint32_t nireq; } TFOptions; typedef struct TFContext { @@ -52,26 +55,79 @@ typedef struct TFModel{ TF_Graph *graph; TF_Session *session; TF_Status *status; + SafeQueue *request_queue; + Queue *inference_queue; } TFModel; +typedef struct tf_infer_request { + TF_Output *tf_outputs; + TF_Tensor **output_tensors; + TF_Output *tf_input; + TF_Tensor *input_tensor; +} tf_infer_request; + +typedef struct RequestItem { + tf_infer_request *infer_request; + InferenceItem *inference; + // further properties will be added later for async +} RequestItem; + #define OFFSET(x) offsetof(TFContext, x) #define FLAGS AV_OPT_FLAG_FILTERING_PARAM static const AVOption dnn_tensorflow_options[] = { { "sess_config", "config for SessionOptions", OFFSET(options.sess_config), AV_OPT_TYPE_STRING, { .str = NULL }, 0, 0, FLAGS }, + { "nireq", "number of request", OFFSET(options.nireq), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, FLAGS }, { NULL } }; AVFILTER_DEFINE_CLASS(dnn_tensorflow); -static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc); +static DNNReturnType execute_model_tf(RequestItem *request, Queue *inference_queue); static void free_buffer(void *data, size_t length) { av_freep(&data); } +static void tf_free_request(tf_infer_request *request) +{ + if (!request) + return; + if (request->input_tensor) { + TF_DeleteTensor(request->input_tensor); + request->input_tensor = NULL; + } + av_freep(&request->tf_input); + av_freep(&request->tf_outputs); + av_freep(&request->output_tensors); +} + +static tf_infer_request* tf_create_inference_request(void) +{ + tf_infer_request* infer_request = av_malloc(sizeof(tf_infer_request)); + infer_request->tf_outputs = NULL; + infer_request->tf_input = NULL; + infer_request->input_tensor = NULL; + infer_request->output_tensors = NULL; + return infer_request; +} + +static DNNReturnType extract_inference_from_task(TaskItem *task, Queue *inference_queue) +{ + InferenceItem *inference = av_malloc(sizeof(*inference)); + if (!inference) { + return DNN_ERROR; + } + task->inference_todo = 1; + task->inference_done = 0; + inference->task = task; + if (ff_queue_push_back(inference_queue, inference) < 0) { + av_freep(&inference); + return DNN_ERROR; + } + return DNN_SUCCESS; +} + static TF_Buffer *read_graph(const char *model_filename) { TF_Buffer *graph_buf; @@ -171,6 +227,8 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu TFContext *ctx = &tf_model->ctx; AVFrame *in_frame = av_frame_alloc(); AVFrame *out_frame = NULL; + TaskItem task; + RequestItem *request; if (!in_frame) { av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input frame\n"); @@ -187,7 +245,27 @@ static DNNReturnType get_output_tf(void *model, const char *input_name, int inpu in_frame->width = input_width; in_frame->height = input_height; - ret = execute_model_tf(tf_model->model, input_name, in_frame, &output_name, 1, out_frame, 0); + task.do_ioproc = 0; + task.async = 0; + task.input_name = input_name; + task.in_frame = in_frame; + task.output_names = &output_name; + task.out_frame = out_frame; + task.model = tf_model; + task.nb_output = 1; + + if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + return DNN_ERROR; + } + + request = ff_safe_queue_pop_front(tf_model->request_queue); + if (!request) { + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); + return DNN_ERROR; + } + + ret = execute_model_tf(request, tf_model->inference_queue); *output_width = out_frame->width; *output_height = out_frame->height; @@ -691,6 +769,7 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ { DNNModel *model = NULL; TFModel *tf_model = NULL; + TFContext *ctx = NULL; model = av_mallocz(sizeof(DNNModel)); if (!model){ @@ -704,10 +783,11 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ } tf_model->ctx.class = &dnn_tensorflow_class; tf_model->model = model; + ctx = &tf_model->ctx; //parse options - av_opt_set_defaults(&tf_model->ctx); - if (av_opt_set_from_string(&tf_model->ctx, options, NULL, "=", "&") < 0) { + av_opt_set_defaults(&ctx); + if (av_opt_set_from_string(&ctx, options, NULL, "=", "&") < 0) { av_log(&tf_model->ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options); av_freep(&tf_model); av_freep(&model); @@ -723,6 +803,19 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ } } + if (ctx->options.nireq <= 0) { + ctx->options.nireq = av_cpu_count() / 2 + 1; + } + + tf_model->request_queue = ff_safe_queue_create(); + + for (int i = 0; i < ctx->options.nireq; i++) { + RequestItem *item = av_mallocz(sizeof(*item)); + item->infer_request = tf_create_inference_request(); + ff_safe_queue_push_back(tf_model->request_queue, item); + } + + tf_model->inference_queue = ff_queue_create(); model->model = tf_model; model->get_input = &get_input_tf; model->get_output = &get_output_tf; @@ -733,168 +826,176 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ return model; } -static DNNReturnType execute_model_tf(const DNNModel *model, const char *input_name, AVFrame *in_frame, - const char **output_names, uint32_t nb_output, AVFrame *out_frame, - int do_ioproc) +static DNNReturnType execute_model_tf(RequestItem *request, Queue *inference_queue) { - TF_Output *tf_outputs; - TFModel *tf_model = model->model; - TFContext *ctx = &tf_model->ctx; + TFModel *tf_model; + TFContext *ctx; + tf_infer_request *infer_request; + InferenceItem *inference; + TaskItem *task; DNNData input, *outputs; - TF_Tensor **output_tensors; - TF_Output tf_input; - TF_Tensor *input_tensor; - if (get_input_tf(tf_model, &input, input_name) != DNN_SUCCESS) + inference = ff_queue_pop_front(inference_queue); + av_assert0(inference); + task = inference->task; + tf_model = task->model; + ctx = &tf_model->ctx; + request->inference = inference; + + if (get_input_tf(tf_model, &input, task->input_name) != DNN_SUCCESS) return DNN_ERROR; - input.height = in_frame->height; - input.width = in_frame->width; - tf_input.oper = TF_GraphOperationByName(tf_model->graph, input_name); - if (!tf_input.oper){ + infer_request = request->infer_request; + input.height = task->in_frame->height; + input.width = task->in_frame->width; + + infer_request->tf_input = av_malloc(sizeof(TF_Output)); + infer_request->tf_input->oper = TF_GraphOperationByName(tf_model->graph, task->input_name); + if (!infer_request->tf_input->oper){ av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); return DNN_ERROR; } - tf_input.index = 0; - input_tensor = allocate_input_tensor(&input); - if (!input_tensor){ + infer_request->tf_input->index = 0; + infer_request->input_tensor = allocate_input_tensor(&input); + if (!infer_request->input_tensor){ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for input tensor\n"); return DNN_ERROR; } - input.data = (float *)TF_TensorData(input_tensor); + input.data = (float *)TF_TensorData(infer_request->input_tensor); switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: - if (do_ioproc) { + if (task->do_ioproc) { if (tf_model->model->frame_pre_proc != NULL) { - tf_model->model->frame_pre_proc(in_frame, &input, tf_model->model->filter_ctx); + tf_model->model->frame_pre_proc(task->in_frame, &input, tf_model->model->filter_ctx); } else { - ff_proc_from_frame_to_dnn(in_frame, &input, ctx); + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); } } break; case DFT_ANALYTICS_DETECT: - ff_frame_to_dnn_detect(in_frame, &input, ctx); + ff_frame_to_dnn_detect(task->in_frame, &input, ctx); break; default: avpriv_report_missing_feature(ctx, "model function type %d", tf_model->model->func_type); break; } - tf_outputs = av_malloc_array(nb_output, sizeof(*tf_outputs)); - if (tf_outputs == NULL) { - TF_DeleteTensor(input_tensor); - av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); \ + infer_request->tf_outputs = av_malloc_array(task->nb_output, sizeof(TF_Output)); + if (infer_request->tf_outputs == NULL) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *tf_outputs\n"); return DNN_ERROR; } - output_tensors = av_mallocz_array(nb_output, sizeof(*output_tensors)); - if (!output_tensors) { - TF_DeleteTensor(input_tensor); - av_freep(&tf_outputs); - av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); \ + infer_request->output_tensors = av_mallocz_array(task->nb_output, sizeof(*infer_request->output_tensors)); + if (!infer_request->output_tensors) { + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for output tensor\n"); return DNN_ERROR; } - for (int i = 0; i < nb_output; ++i) { - tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, output_names[i]); - if (!tf_outputs[i].oper) { - TF_DeleteTensor(input_tensor); - av_freep(&tf_outputs); - av_freep(&output_tensors); - av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", output_names[i]); \ + for (int i = 0; i < task->nb_output; ++i) { + infer_request->tf_outputs[i].oper = TF_GraphOperationByName(tf_model->graph, task->output_names[i]); + if (!infer_request->tf_outputs[i].oper) { + av_log(ctx, AV_LOG_ERROR, "Could not find output \"%s\" in model\n", task->output_names[i]); return DNN_ERROR; } - tf_outputs[i].index = 0; + infer_request->tf_outputs[i].index = 0; } TF_SessionRun(tf_model->session, NULL, - &tf_input, &input_tensor, 1, - tf_outputs, output_tensors, nb_output, - NULL, 0, NULL, tf_model->status); + infer_request->tf_input, &infer_request->input_tensor, 1, + infer_request->tf_outputs, infer_request->output_tensors, + task->nb_output, NULL, 0, NULL, + tf_model->status); if (TF_GetCode(tf_model->status) != TF_OK) { - TF_DeleteTensor(input_tensor); - av_freep(&tf_outputs); - av_freep(&output_tensors); - av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); - return DNN_ERROR; + tf_free_request(infer_request); + av_log(ctx, AV_LOG_ERROR, "Failed to run session when executing model\n"); + return DNN_ERROR; } - outputs = av_malloc_array(nb_output, sizeof(*outputs)); + outputs = av_malloc_array(task->nb_output, sizeof(*outputs)); if (!outputs) { - TF_DeleteTensor(input_tensor); - av_freep(&tf_outputs); - av_freep(&output_tensors); - av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); \ + tf_free_request(infer_request); + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for *outputs\n"); return DNN_ERROR; } - for (uint32_t i = 0; i < nb_output; ++i) { - outputs[i].height = TF_Dim(output_tensors[i], 1); - outputs[i].width = TF_Dim(output_tensors[i], 2); - outputs[i].channels = TF_Dim(output_tensors[i], 3); - outputs[i].data = TF_TensorData(output_tensors[i]); - outputs[i].dt = TF_TensorType(output_tensors[i]); + for (uint32_t i = 0; i < task->nb_output; ++i) { + outputs[i].height = TF_Dim(infer_request->output_tensors[i], 1); + outputs[i].width = TF_Dim(infer_request->output_tensors[i], 2); + outputs[i].channels = TF_Dim(infer_request->output_tensors[i], 3); + outputs[i].data = TF_TensorData(infer_request->output_tensors[i]); + outputs[i].dt = TF_TensorType(infer_request->output_tensors[i]); } - switch (model->func_type) { + switch (tf_model->model->func_type) { case DFT_PROCESS_FRAME: //it only support 1 output if it's frame in & frame out - if (do_ioproc) { + if (task->do_ioproc) { if (tf_model->model->frame_post_proc != NULL) { - tf_model->model->frame_post_proc(out_frame, outputs, tf_model->model->filter_ctx); + tf_model->model->frame_post_proc(task->out_frame, outputs, tf_model->model->filter_ctx); } else { - ff_proc_from_dnn_to_frame(out_frame, outputs, ctx); + ff_proc_from_dnn_to_frame(task->out_frame, outputs, ctx); } } else { - out_frame->width = outputs[0].width; - out_frame->height = outputs[0].height; + task->out_frame->width = outputs[0].width; + task->out_frame->height = outputs[0].height; } break; case DFT_ANALYTICS_DETECT: - if (!model->detect_post_proc) { + if (!tf_model->model->detect_post_proc) { av_log(ctx, AV_LOG_ERROR, "Detect filter needs provide post proc\n"); return DNN_ERROR; } - model->detect_post_proc(out_frame, outputs, nb_output, model->filter_ctx); + tf_model->model->detect_post_proc(task->out_frame, outputs, task->nb_output, tf_model->model->filter_ctx); break; default: - for (uint32_t i = 0; i < nb_output; ++i) { - if (output_tensors[i]) { - TF_DeleteTensor(output_tensors[i]); + for (uint32_t i = 0; i < task->nb_output; ++i) { + if (infer_request->output_tensors[i]) { + TF_DeleteTensor(infer_request->output_tensors[i]); } } - TF_DeleteTensor(input_tensor); - av_freep(&output_tensors); - av_freep(&tf_outputs); - av_freep(&outputs); - av_log(ctx, AV_LOG_ERROR, "Tensorflow backend does not support this kind of dnn filter now\n"); return DNN_ERROR; } - - for (uint32_t i = 0; i < nb_output; ++i) { - if (output_tensors[i]) { - TF_DeleteTensor(output_tensors[i]); + for (uint32_t i = 0; i < task->nb_output; ++i) { + if (infer_request->output_tensors[i]) { + TF_DeleteTensor(infer_request->output_tensors[i]); } } - TF_DeleteTensor(input_tensor); - av_freep(&output_tensors); - av_freep(&tf_outputs); + task->inference_done++; + tf_free_request(infer_request); av_freep(&outputs); - return DNN_SUCCESS; + ff_safe_queue_push_back(tf_model->request_queue, request); + return (task->inference_done == task->inference_todo) ? DNN_SUCCESS : DNN_ERROR; } DNNReturnType ff_dnn_execute_model_tf(const DNNModel *model, DNNExecBaseParams *exec_params) { TFModel *tf_model = model->model; TFContext *ctx = &tf_model->ctx; + TaskItem task; + RequestItem *request; if (ff_check_exec_params(ctx, DNN_TF, model->func_type, exec_params) != 0) { - return DNN_ERROR; + return DNN_ERROR; + } + + if (ff_dnn_fill_task(&task, exec_params, tf_model, 0, 1) != DNN_SUCCESS) { + return DNN_ERROR; + } + + if (extract_inference_from_task(&task, tf_model->inference_queue) != DNN_SUCCESS) { + av_log(ctx, AV_LOG_ERROR, "unable to extract inference from task.\n"); + return DNN_ERROR; } - return execute_model_tf(model, exec_params->input_name, exec_params->in_frame, - exec_params->output_names, exec_params->nb_output, exec_params->out_frame, 1); + request = ff_safe_queue_pop_front(tf_model->request_queue); + if (!request) { + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); + return DNN_ERROR; + } + + return execute_model_tf(request, tf_model->inference_queue); } void ff_dnn_free_model_tf(DNNModel **model) @@ -903,6 +1004,20 @@ void ff_dnn_free_model_tf(DNNModel **model) if (*model){ tf_model = (*model)->model; + while (ff_safe_queue_size(tf_model->request_queue) != 0) { + RequestItem *item = ff_safe_queue_pop_front(tf_model->request_queue); + tf_free_request(item->infer_request); + av_freep(&item->infer_request); + av_freep(&item); + } + ff_safe_queue_destroy(tf_model->request_queue); + + while (ff_queue_size(tf_model->inference_queue) != 0) { + InferenceItem *item = ff_queue_pop_front(tf_model->inference_queue); + av_freep(&item); + } + ff_queue_destroy(tf_model->inference_queue); + if (tf_model->graph){ TF_DeleteGraph(tf_model->graph); } -- 2.25.1 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-requ...@ffmpeg.org with subject "unsubscribe".