>>> "John" == John Kitchin <jkitc...@andrew.cmu.edu> writes:
> Here is an example using sympy. I think you will have to wrap the matlab > output in $$ yourself if that is what you want. Right. Using your example I obtain: ,---- | | | < M A T L A B (R) > | Copyright 1984-2010 The MathWorks, Inc. | Version 7.10.0.499 (R2010a) 32-bit (glnx86) | February 5, 2010 | | | To get started, type one of these: helpwin, helpdesk, or demo. | For product information, visit www.mathworks.com. | | >> >> >> >> >> >> | ltxjac = | | \left(\begin{array}{cc} {\left(\left(e + p\right)\, R^2 + e\right)}^{\frac{g}{2} - \frac{3}{2}}\, \left(R^2 + 1\right)\, \left(\frac{g}{2} - \frac{1}{2}\right) & R^2\, {\left(\left(e + p\right)\, R^2 + e\right)}^{\frac{g}{2} - \frac{3}{2}}\, \left(\frac{g}{2} - \frac{1}{2}\right)\\ \frac{R\, \sqrt{R^2 + 1}}{\left(e + p\right)\, R^2 + e} - \frac{R\, {\left(R^2 + 1\right)}^{\frac{3}{2}}\, \left(e + p\right)}{{\left(\left(e + p\right)\, R^2 + e\right)}^2} & \frac{R\, \sqrt{R^2 + 1}}{\left(e + p\right)\, R^2 + e} - \frac{R^3\, \sqrt{R^2 + 1}\, \left(e + p\right)}{{\left(\left(e + p\right)\, R^2 + e\right)}^2} \end{array}\right) | | >> `---- That is not perfect but much better than the original solutions, thanks Uwe