Hi!.
I have 0.8.0 version, from September  2017

2018-06-12 4:48 GMT-05:00 Jianfeng (Jeff) Zhang <jzh...@hortonworks.com>:

>
> Which version do you use ?
>
>
> Best Regard,
> Jeff Zhang
>
>
> From: Jhon Anderson Cardenas Diaz <jhonderson2...@gmail.com<mailto:
> jhonderson2...@gmail.com>>
> Reply-To: "us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>" <
> us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>>
> Date: Friday, June 8, 2018 at 11:08 PM
> To: "us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>" <
> us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>>, "
> dev@zeppelin.apache.org<mailto:dev@zeppelin.apache.org>" <
> dev@zeppelin.apache.org<mailto:dev@zeppelin.apache.org>>
> Subject: All PySpark jobs are canceled when one user cancel his PySpark
> paragraph (job)
>
> Dear community,
>
> Currently we are having problems with multiple users running paragraphs
> associated with pyspark jobs.
>
> The problem is that if an user aborts/cancels his pyspark paragraph (job),
> the active pyspark jobs of the other users are canceled too.
>
> Going into detail, I've seen that when you cancel a user's job this method
> is invoked (which is fine):
>
> sc.cancelJobGroup("zeppelin-[notebook-id]-[paragraph-id]")
>
> But somehow unknown to me, this method is also invoked:
>
> sc.cancelAllJobs()
>
> The above is due to the trace of the log that appears in the jobs of the
> other users:
>
> Py4JJavaError: An error occurred while calling o885.count.
> : org.apache.spark.SparkException: Job 461 cancelled as part of
> cancellation of all jobs
> at org.apache.spark.scheduler.DAGScheduler.org<http://org.
> apache.spark.scheduler.DAGScheduler.org>$apache$
> spark$scheduler$DAGScheduler$$failJobAndIndependentStages(
> DAGScheduler.scala:1435)
> at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation(
> DAGScheduler.scala:1375)
> at org.apache.spark.scheduler.DAGScheduler$$anonfun$
> doCancelAllJobs$1.apply$mcVI$sp(DAGScheduler.scala:721)
> at org.apache.spark.scheduler.DAGScheduler$$anonfun$
> doCancelAllJobs$1.apply(DAGScheduler.scala:721)
> at org.apache.spark.scheduler.DAGScheduler$$anonfun$
> doCancelAllJobs$1.apply(DAGScheduler.scala:721)
> at scala.collection.mutable.HashSet.foreach(HashSet.scala:78)
> at org.apache.spark.scheduler.DAGScheduler.doCancelAllJobs(
> DAGScheduler.scala:721)
> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> doOnReceive(DAGScheduler.scala:1628)
> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1605)
> at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.
> onReceive(DAGScheduler.scala:1594)
> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
> at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951)
> at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965)
> at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936)
> at org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:151)
> at org.apache.spark.rdd.RDDOperationScope$.withScope(
> RDDOperationScope.scala:112)
> at org.apache.spark.rdd.RDD.withScope(RDD.scala:362)
> at org.apache.spark.rdd.RDD.collect(RDD.scala:935)
> at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.
> scala:275)
> at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$
> Dataset$$execute$1$1.apply(Dataset.scala:2386)
> at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(
> SQLExecution.scala:57)
> at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2788)
> at org.apache.spark.sql.Dataset.org<http://org.apache.spark.
> sql.Dataset.org>$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2385)
> at org.apache.spark.sql.Dataset.org<http://org.apache.spark.
> sql.Dataset.org>$apache$spark$sql$Dataset$$collect(Dataset.scala:2392)
> at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2420)
> at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2419)
> at org.apache.spark.sql.Dataset.withCallback(Dataset.scala:2801)
> at org.apache.spark.sql.Dataset.count(Dataset.scala:2419)
> at sun.reflect.GeneratedMethodAccessor120.invoke(Unknown Source)
> at sun.reflect.DelegatingMethodAccessorImpl.invoke(
> DelegatingMethodAccessorImpl.java:43)
> at java.lang.reflect.Method.invoke(Method.java:498)
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
> at py4j.Gateway.invoke(Gateway.java:280)
> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79)
> at py4j.GatewayConnection.run(GatewayConnection.java:214)
> at java.lang.Thread.run(Thread.java:748)
>
> (<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError('An error occurred
> while calling o885.count.\n', JavaObject id=o886), <traceback object at
> 0x7f9e669ae588>)
>
> Any idea of why this could be happening?
>
> (I have 0.8.0 version from September 2017)
>
> Thank you!
>

Reply via email to