Hi!. I have 0.8.0 version, from September 2017 2018-06-12 4:48 GMT-05:00 Jianfeng (Jeff) Zhang <jzh...@hortonworks.com>:
> > Which version do you use ? > > > Best Regard, > Jeff Zhang > > > From: Jhon Anderson Cardenas Diaz <jhonderson2...@gmail.com<mailto: > jhonderson2...@gmail.com>> > Reply-To: "us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>" < > us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>> > Date: Friday, June 8, 2018 at 11:08 PM > To: "us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>" < > us...@zeppelin.apache.org<mailto:us...@zeppelin.apache.org>>, " > dev@zeppelin.apache.org<mailto:dev@zeppelin.apache.org>" < > dev@zeppelin.apache.org<mailto:dev@zeppelin.apache.org>> > Subject: All PySpark jobs are canceled when one user cancel his PySpark > paragraph (job) > > Dear community, > > Currently we are having problems with multiple users running paragraphs > associated with pyspark jobs. > > The problem is that if an user aborts/cancels his pyspark paragraph (job), > the active pyspark jobs of the other users are canceled too. > > Going into detail, I've seen that when you cancel a user's job this method > is invoked (which is fine): > > sc.cancelJobGroup("zeppelin-[notebook-id]-[paragraph-id]") > > But somehow unknown to me, this method is also invoked: > > sc.cancelAllJobs() > > The above is due to the trace of the log that appears in the jobs of the > other users: > > Py4JJavaError: An error occurred while calling o885.count. > : org.apache.spark.SparkException: Job 461 cancelled as part of > cancellation of all jobs > at org.apache.spark.scheduler.DAGScheduler.org<http://org. > apache.spark.scheduler.DAGScheduler.org>$apache$ > spark$scheduler$DAGScheduler$$failJobAndIndependentStages( > DAGScheduler.scala:1435) > at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation( > DAGScheduler.scala:1375) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > doCancelAllJobs$1.apply$mcVI$sp(DAGScheduler.scala:721) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > doCancelAllJobs$1.apply(DAGScheduler.scala:721) > at org.apache.spark.scheduler.DAGScheduler$$anonfun$ > doCancelAllJobs$1.apply(DAGScheduler.scala:721) > at scala.collection.mutable.HashSet.foreach(HashSet.scala:78) > at org.apache.spark.scheduler.DAGScheduler.doCancelAllJobs( > DAGScheduler.scala:721) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > doOnReceive(DAGScheduler.scala:1628) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1605) > at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop. > onReceive(DAGScheduler.scala:1594) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951) > at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965) > at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:151) > at org.apache.spark.rdd.RDDOperationScope$.withScope( > RDDOperationScope.scala:112) > at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) > at org.apache.spark.rdd.RDD.collect(RDD.scala:935) > at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan. > scala:275) > at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$ > Dataset$$execute$1$1.apply(Dataset.scala:2386) > at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId( > SQLExecution.scala:57) > at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2788) > at org.apache.spark.sql.Dataset.org<http://org.apache.spark. > sql.Dataset.org>$apache$spark$sql$Dataset$$execute$1(Dataset.scala:2385) > at org.apache.spark.sql.Dataset.org<http://org.apache.spark. > sql.Dataset.org>$apache$spark$sql$Dataset$$collect(Dataset.scala:2392) > at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2420) > at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2419) > at org.apache.spark.sql.Dataset.withCallback(Dataset.scala:2801) > at org.apache.spark.sql.Dataset.count(Dataset.scala:2419) > at sun.reflect.GeneratedMethodAccessor120.invoke(Unknown Source) > at sun.reflect.DelegatingMethodAccessorImpl.invoke( > DelegatingMethodAccessorImpl.java:43) > at java.lang.reflect.Method.invoke(Method.java:498) > at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) > at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) > at py4j.Gateway.invoke(Gateway.java:280) > at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) > at py4j.commands.CallCommand.execute(CallCommand.java:79) > at py4j.GatewayConnection.run(GatewayConnection.java:214) > at java.lang.Thread.run(Thread.java:748) > > (<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError('An error occurred > while calling o885.count.\n', JavaObject id=o886), <traceback object at > 0x7f9e669ae588>) > > Any idea of why this could be happening? > > (I have 0.8.0 version from September 2017) > > Thank you! >