Dear community, Currently we are having problems with multiple users running paragraphs associated with pyspark jobs.
The problem is that if an user aborts/cancels his pyspark paragraph (job), the active pyspark jobs of the other users are canceled too. Going into detail, I've seen that when you cancel a user's job this method is invoked (which is fine): sc.cancelJobGroup("zeppelin-[notebook-id]-[paragraph-id]") But somehow unknown to me, this method is also invoked: sc.cancelAllJobs() The above is due to the trace of the log that appears in the jobs of the other users: Py4JJavaError: An error occurred while calling o885.count. : org.apache.spark.SparkException: Job 461 cancelled as part of cancellation of all jobs at org.apache.spark.scheduler.DAGScheduler.org $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1435) at org.apache.spark.scheduler.DAGScheduler.handleJobCancellation(DAGScheduler.scala:1375) at org.apache.spark.scheduler.DAGScheduler$$anonfun$doCancelAllJobs$1.apply$mcVI$sp(DAGScheduler.scala:721) at org.apache.spark.scheduler.DAGScheduler$$anonfun$doCancelAllJobs$1.apply(DAGScheduler.scala:721) at org.apache.spark.scheduler.DAGScheduler$$anonfun$doCancelAllJobs$1.apply(DAGScheduler.scala:721) at scala.collection.mutable.HashSet.foreach(HashSet.scala:78) at org.apache.spark.scheduler.DAGScheduler.doCancelAllJobs(DAGScheduler.scala:721) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1628) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1605) at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1594) at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:628) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1925) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1938) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1951) at org.apache.spark.SparkContext.runJob(SparkContext.scala:1965) at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:936) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:151) at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:112) at org.apache.spark.rdd.RDD.withScope(RDD.scala:362) at org.apache.spark.rdd.RDD.collect(RDD.scala:935) at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:275) at org.apache.spark.sql.Dataset$$anonfun$org$apache$spark$sql$Dataset$$execute$1$1.apply(Dataset.scala:2386) at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:57) at org.apache.spark.sql.Dataset.withNewExecutionId(Dataset.scala:2788) at org.apache.spark.sql.Dataset.org $apache$spark$sql$Dataset$$execute$1(Dataset.scala:2385) at org.apache.spark.sql.Dataset.org $apache$spark$sql$Dataset$$collect(Dataset.scala:2392) at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2420) at org.apache.spark.sql.Dataset$$anonfun$count$1.apply(Dataset.scala:2419) at org.apache.spark.sql.Dataset.withCallback(Dataset.scala:2801) at org.apache.spark.sql.Dataset.count(Dataset.scala:2419) at sun.reflect.GeneratedMethodAccessor120.invoke(Unknown Source) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43) at java.lang.reflect.Method.invoke(Method.java:498) at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244) at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357) at py4j.Gateway.invoke(Gateway.java:280) at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132) at py4j.commands.CallCommand.execute(CallCommand.java:79) at py4j.GatewayConnection.run(GatewayConnection.java:214) at java.lang.Thread.run(Thread.java:748) (<class 'py4j.protocol.Py4JJavaError'>, Py4JJavaError('An error occurred while calling o885.count.\n', JavaObject id=o886), <traceback object at 0x7f9e669ae588>) Any idea of why this could be happening? (I have 0.8.0 version from September 2017) Thank you!