[ https://issues.apache.org/jira/browse/TIKA-2672?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=16536809#comment-16536809 ]
ASF GitHub Bot commented on TIKA-2672: -------------------------------------- ThejanW commented on issue #241: Fix for TIKA-2672 URL: https://github.com/apache/tika/pull/241#issuecomment-403449343 oops! unit tests worked fine for me, we can safely exclude javacpp from tika-dl, then I got a dependency convergence issue: > Dependency convergence error for net.java.dev.jna:jna:4.1.0 paths to dependency are: +-org.apache.tika:tika-dl:2.0.0-SNAPSHOT +-org.apache.tika:tika-parsers:2.0.0-SNAPSHOT +-edu.ucar:netcdf4:4.5.5 +-net.java.dev.jna:jna:4.1.0 and +-org.apache.tika:tika-dl:2.0.0-SNAPSHOT +-org.deeplearning4j:deeplearning4j-nn:1.0.0-SNAPSHOT +-com.github.oshi:oshi-core:3.4.2 +-net.java.dev.jna:jna-platform:4.3.0 +-net.java.dev.jna:jna:4.3.0 In my latest commit, I have excluded jna in edu.ucar dependencies of tika-parsers and have added jna as a direct dependency. Any objections for that? @chrismattmann @tballison, I built the entire Tika project, the build was a success in my linux machine. ---------------------------------------------------------------- This is an automated message from the Apache Git Service. To respond to the message, please log on GitHub and use the URL above to go to the specific comment. For queries about this service, please contact Infrastructure at: us...@infra.apache.org > Upgrade dl4j to 1.0.0-beta > -------------------------- > > Key: TIKA-2672 > URL: https://issues.apache.org/jira/browse/TIKA-2672 > Project: Tika > Issue Type: Task > Reporter: Tim Allison > Priority: Major > Attachments: TIKA-2672.patch > > > Let's try to upgrade dl4j. I think I got us most of the way there, but I got > this error when reading the json config file. Can someone with more > knowledge of layer specs help ([~thammegowda], perhaps :))? > {noformat} > org.deeplearning4j.exception.DL4JInvalidConfigException: Invalid > configuration for layer (idx=-1, name=convolution2d_2, type=ConvolutionLayer) > for width dimension: Invalid input configuration for kernel width. Require 0 > < kW <= inWidth + 2*padW; got (kW=3, inWidth=1, padW=0) > Input type = InputTypeConvolutional(h=149,w=1,c=32), kernel = [3, 3], strides > = [1, 1], padding = [0, 0], layer size (output channels) = 32, convolution > mode = Truncate > {noformat} -- This message was sent by Atlassian JIRA (v7.6.3#76005)