Dear Spark developers, I would like to create a dataframe with one column. However, the createDataFrame method accepts at least a Product:
val data = Seq(1.0, 2.0) val rdd = sc.parallelize(data, 2) val df = sqlContext.createDataFrame(rdd) [fail]<console>:25: error: overloaded method value createDataFrame with alternatives: [A <: Product](data: Seq[A])(implicit evidence$2: reflect.runtime.universe.TypeTag[A])org.apache.spark.sql.DataFrame <and> [A <: Product](rdd: org.apache.spark.rdd.RDD[A])(implicit evidence$1: reflect.runtime.universe.TypeTag[A])org.apache.spark.sql.DataFrame cannot be applied to (org.apache.spark.rdd.RDD[Double]) val df = sqlContext.createDataFrame(rdd) So, if I zip rdd with index, then it is OK: val df = sqlContext.createDataFrame(rdd.zipWithIndex) [success]df: org.apache.spark.sql.DataFrame = [_1: double, _2: bigint] Also, if I use the case class, it also seems to work: case class Hack(x: Double) val caseRDD = rdd.map( x => Hack(x)) val df = sqlContext.createDataFrame(caseRDD) [success]df: org.apache.spark.sql.DataFrame = [x: double] What is the recommended way of creating a dataframe with one column? Best regards, Alexander