You could use `Tuple1(x)` instead of `Hack`

On Mon, Sep 14, 2015 at 10:50 AM, Ulanov, Alexander <
alexander.ula...@hpe.com> wrote:

> Dear Spark developers,
>
>
>
> I would like to create a dataframe with one column. However, the
> createDataFrame method accepts at least a Product:
>
>
>
> val data = Seq(1.0, 2.0)
>
> val rdd = sc.parallelize(data, 2)
>
> val df = sqlContext.createDataFrame(rdd)
>
> [fail]<console>:25: error: overloaded method value createDataFrame with
> alternatives:
>
>  [A <: Product](data: Seq[A])(implicit evidence$2:
> reflect.runtime.universe.TypeTag[A])org.apache.spark.sql.DataFrame <and>
>
>   [A <: Product](rdd: org.apache.spark.rdd.RDD[A])(implicit evidence$1:
> reflect.runtime.universe.TypeTag[A])org.apache.spark.sql.DataFrame
>
> cannot be applied to (org.apache.spark.rdd.RDD[Double])
>
>        val df = sqlContext.createDataFrame(rdd)
>
>
>
> So, if I zip rdd with index, then it is OK:
>
> val df = sqlContext.createDataFrame(rdd.zipWithIndex)
>
> [success]df: org.apache.spark.sql.DataFrame = [_1: double, _2: bigint]
>
>
>
> Also, if I use the case class, it also seems to work:
>
> case class Hack(x: Double)
>
> val caseRDD = rdd.map( x => Hack(x))
>
> val df = sqlContext.createDataFrame(caseRDD)
>
> [success]df: org.apache.spark.sql.DataFrame = [x: double]
>
>
>
> What is the recommended way of creating a dataframe with one column?
>
>
>
> Best regards, Alexander
>

Reply via email to