Hi Shengzhe, Even if we did make Configuration threadsafe, it'd take quite some time for that to trickle down to a Hadoop release that we could actually rely on Spark users having installed. I agree we should consider whether making Configuration threadsafe is something that Hadoop should do, but for the short term I think Spark needs to be able to handle the common scenario of Configuration being single-threaded.
Thanks! Andrew On Tue, Jul 15, 2014 at 2:43 PM, yao <yaosheng...@gmail.com> wrote: > Good catch Andrew. In addition to your proposed solution, is that possible > to fix Configuration class and make it thread-safe ? I think the fix should > be trivial, just use a ConcurrentHashMap, but I am not sure if we can push > this change upstream (will hadoop guys accept this change ? for them, it > seems they never expect Configuration object being accessed by multiple > threads). > > -Shengzhe > > > On Mon, Jul 14, 2014 at 10:22 PM, Andrew Ash <and...@andrewash.com> wrote: > > > Hi Spark devs, > > > > We discovered a very interesting bug in Spark at work last week in Spark > > 0.9.1 — that the way Spark uses the Hadoop Configuration object is prone > to > > thread safety issues. I believe it still applies in Spark 1.0.1 as well. > > Let me explain: > > > > > > *Observations* > > > > - Was running a relatively simple job (read from Avro files, do a map, > > do another map, write back to Avro files) > > - 412 of 413 tasks completed, but the last task was hung in RUNNING > > state > > - The 412 successful tasks completed in median time 3.4s > > - The last hung task didn't finish even in 20 hours > > - The executor with the hung task was responsible for 100% of one core > > of CPU usage > > - Jstack of the executor attached (relevant thread pasted below) > > > > > > *Diagnosis* > > > > After doing some code spelunking, we determined the issue was concurrent > > use of a Configuration object for each task on an executor. In Hadoop > each > > task runs in its own JVM, but in Spark multiple tasks can run in the same > > JVM, so the single-threaded access assumptions of the Configuration > object > > no longer hold in Spark. > > > > The specific issue is that the AvroRecordReader actually _modifies_ the > > JobConf it's given when it's instantiated! It adds a key for the RPC > > protocol engine in the process of connecting to the Hadoop FileSystem. > > When many tasks start at the same time (like at the start of a job), > many > > tasks are adding this configuration item to the one Configuration object > at > > once. Internally Configuration uses a java.lang.HashMap, which isn't > > threadsafe… The below post is an excellent explanation of what happens in > > the situation where multiple threads insert into a HashMap at the same > time. > > > > http://mailinator.blogspot.com/2009/06/beautiful-race-condition.html > > > > The gist is that you have a thread following a cycle of linked list nodes > > indefinitely. This exactly matches our observations of the 100% CPU core > > and also the final location in the stack trace. > > > > So it seems the way Spark shares a Configuration object between task > > threads in an executor is incorrect. We need some way to prevent > > concurrent access to a single Configuration object. > > > > > > *Proposed fix* > > > > We can clone the JobConf object in HadoopRDD.getJobConf() so each task > > gets its own JobConf object (and thus Configuration object). The > > optimization of broadcasting the Configuration object across the cluster > > can remain, but on the other side I think it needs to be cloned for each > > task to allow for concurrent access. I'm not sure the performance > > implications, but the comments suggest that the Configuration object is > > ~10KB so I would expect a clone on the object to be relatively speedy. > > > > Has this been observed before? Does my suggested fix make sense? I'd be > > happy to file a Jira ticket and continue discussion there for the right > way > > to fix. > > > > > > Thanks! > > Andrew > > > > > > P.S. For others seeing this issue, our temporary workaround is to enable > > spark.speculation, which retries failed (or hung) tasks on other > machines. > > > > > > > > "Executor task launch worker-6" daemon prio=10 tid=0x00007f91f01fe000 > > nid=0x54b1 runnable [0x00007f92d74f1000] > > java.lang.Thread.State: RUNNABLE > > at java.util.HashMap.transfer(HashMap.java:601) > > at java.util.HashMap.resize(HashMap.java:581) > > at java.util.HashMap.addEntry(HashMap.java:879) > > at java.util.HashMap.put(HashMap.java:505) > > at org.apache.hadoop.conf.Configuration.set(Configuration.java:803) > > at org.apache.hadoop.conf.Configuration.set(Configuration.java:783) > > at > > org.apache.hadoop.conf.Configuration.setClass(Configuration.java:1662) > > at org.apache.hadoop.ipc.RPC.setProtocolEngine(RPC.java:193) > > at > > > org.apache.hadoop.hdfs.NameNodeProxies.createNNProxyWithClientProtocol(NameNodeProxies.java:343) > > at > > > org.apache.hadoop.hdfs.NameNodeProxies.createNonHAProxy(NameNodeProxies.java:168) > > at > > > org.apache.hadoop.hdfs.NameNodeProxies.createProxy(NameNodeProxies.java:129) > > at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:436) > > at org.apache.hadoop.hdfs.DFSClient.<init>(DFSClient.java:403) > > at > > > org.apache.hadoop.hdfs.DistributedFileSystem.initialize(DistributedFileSystem.java:125) > > at > > org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2262) > > at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:86) > > at > > org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2296) > > at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2278) > > at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:316) > > at org.apache.hadoop.fs.Path.getFileSystem(Path.java:194) > > at org.apache.avro.mapred.FsInput.<init>(FsInput.java:37) > > at > > org.apache.avro.mapred.AvroRecordReader.<init>(AvroRecordReader.java:43) > > at > > > org.apache.avro.mapred.AvroInputFormat.getRecordReader(AvroInputFormat.java:52) > > at org.apache.spark.rdd.HadoopRDD$$anon$1.<init>(HadoopRDD.scala:156) > > at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:149) > > at org.apache.spark.rdd.HadoopRDD.compute(HadoopRDD.scala:64) > > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) > > at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) > > at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) > > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) > > at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) > > at org.apache.spark.rdd.MappedRDD.compute(MappedRDD.scala:31) > > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) > > at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) > > at > org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:109) > > at org.apache.spark.scheduler.Task.run(Task.scala:53) > > at > > > org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:211) > > at > > > org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:42) > > at > > > org.apache.spark.deploy.SparkHadoopUtil$$anon$1.run(SparkHadoopUtil.scala:41) > > at java.security.AccessController.doPrivileged(Native Method) > > at javax.security.auth.Subject.doAs(Subject.java:415) > > at > > > org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1408) > > at > > > org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:41) > > at > > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:176) > > at > > > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > > at > > > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > > at java.lang.Thread.run(Thread.java:745) > > > > >