andrew/nick, thx for the input, got it to work: sc.hadoopConfiguration.set("record.delimiter.regex", "^[A-Za-z]{3},\\s\\d{2}\\s[A-Za-z]{3}.*")
:-) -anurag On Tue, Apr 8, 2014 at 1:47 PM, Anurag <anurag.pha...@gmail.com> wrote: > andrew - yes, i am using the PatternInputFormat from the blog post you > referenced. > I know how to set the pattern in configuration while writing a MR job, how > do i do that from a spark shell? > > -anurag > > > > On Tue, Apr 8, 2014 at 1:41 PM, Andrew Ash <and...@andrewash.com> wrote: > >> Are you using the PatternInputFormat from this blog post? >> >> >> https://hadoopi.wordpress.com/2013/05/31/custom-recordreader-processing-string-pattern-delimited-records/ >> >> If so you need to set the pattern in the configuration before attempting >> to >> read data with that InputFormat: >> >> String regex = "^[A-Za-z]{3},\\s\\d{2}\\s[A-Za-z]{3}.*"; >> Configuration conf = new Configuration(true); >> conf.set("record.delimiter.regex", regex); >> >> >> On Tue, Apr 8, 2014 at 1:36 PM, Anurag <anurag.pha...@gmail.com> wrote: >> >> > Hi, >> > I am able to read a custom input format in spark. >> > scala> val inputRead = sc.newAPIHadoopFile("hdfs:// >> > 127.0.0.1/user/cloudera/date_dataset/ >> > >> > >> ",classOf[io.reader.PatternInputFormat],classOf[org.apache.hadoop.io.LongWritable],classOf[org.apache.hadoop.io.Text]) >> > >> > However, doing a >> > inputRead.count() >> > results in null pointer exception. >> > 14/04/08 13:33:39 INFO FileInputFormat: Total input paths to process : 1 >> > 14/04/08 13:33:39 INFO SparkContext: Starting job: count at <console>:15 >> > 14/04/08 13:33:39 INFO DAGScheduler: Got job 8 (count at <console>:15) >> with >> > 1 output partitions (allowLocal=false) >> > 14/04/08 13:33:39 INFO DAGScheduler: Final stage: Stage 9 (count at >> > <console>:15) >> > 14/04/08 13:33:39 INFO DAGScheduler: Parents of final stage: List() >> > 14/04/08 13:33:39 INFO DAGScheduler: Missing parents: List() >> > 14/04/08 13:33:39 INFO DAGScheduler: Submitting Stage 9 >> (NewHadoopRDD[19] >> > at newAPIHadoopFile at <console>:12), which has no missing parents >> > 14/04/08 13:33:39 INFO DAGScheduler: Submitting 1 missing tasks from >> Stage >> > 9 (NewHadoopRDD[19] at newAPIHadoopFile at <console>:12) >> > 14/04/08 13:33:39 INFO TaskSchedulerImpl: Adding task set 9.0 with 1 >> tasks >> > 14/04/08 13:33:39 INFO TaskSetManager: Starting task 9.0:0 as TID 8 on >> > executor localhost: localhost (PROCESS_LOCAL) >> > 14/04/08 13:33:39 INFO TaskSetManager: Serialized task 9.0:0 as 1297 >> bytes >> > in 0 ms >> > 14/04/08 13:33:39 INFO Executor: Running task ID 8 >> > 14/04/08 13:33:39 INFO BlockManager: Found block broadcast_5 locally >> > 14/04/08 13:33:39 INFO NewHadoopRDD: Input split: hdfs:// >> > 127.0.0.1/user/cloudera/date_dataset/sample.txt:0+759 >> > 14/04/08 13:33:39 WARN TaskSetManager: Lost TID 8 (task 9.0:0) >> > 14/04/08 13:33:39 WARN TaskSetManager: Loss was due to >> > java.lang.NullPointerException >> > java.lang.NullPointerException >> > at java.util.regex.Pattern.<init>(Pattern.java:1132) >> > at java.util.regex.Pattern.compile(Pattern.java:823) >> > at >> > io.reader.PatternRecordReader.initialize(PatternRecordReader.java:42) >> > at >> > org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:96) >> > at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:84) >> > at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:48) >> > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) >> > at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) >> > at >> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:109) >> > at org.apache.spark.scheduler.Task.run(Task.scala:53) >> > at >> > >> > >> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213) >> > at >> > >> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49) >> > at >> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178) >> > at >> > >> > >> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) >> > at >> > >> > >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) >> > at java.lang.Thread.run(Thread.java:662) >> > 14/04/08 13:33:39 ERROR TaskSetManager: Task 9.0:0 failed 1 times; >> aborting >> > job >> > 14/04/08 13:33:39 INFO DAGScheduler: Failed to run count at <console>:15 >> > 14/04/08 13:33:39 INFO TaskSchedulerImpl: Remove TaskSet 9.0 from pool >> > 14/04/08 13:33:39 ERROR Executor: Exception in task ID 8 >> > java.lang.NullPointerException >> > at java.util.regex.Pattern.<init>(Pattern.java:1132) >> > at java.util.regex.Pattern.compile(Pattern.java:823) >> > at >> > io.reader.PatternRecordReader.initialize(PatternRecordReader.java:42) >> > at >> > org.apache.spark.rdd.NewHadoopRDD$$anon$1.<init>(NewHadoopRDD.scala:96) >> > at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:84) >> > at org.apache.spark.rdd.NewHadoopRDD.compute(NewHadoopRDD.scala:48) >> > at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:241) >> > at org.apache.spark.rdd.RDD.iterator(RDD.scala:232) >> > at >> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:109) >> > at org.apache.spark.scheduler.Task.run(Task.scala:53) >> > at >> > >> > >> org.apache.spark.executor.Executor$TaskRunner$$anonfun$run$1.apply$mcV$sp(Executor.scala:213) >> > at >> > >> org.apache.spark.deploy.SparkHadoopUtil.runAsUser(SparkHadoopUtil.scala:49) >> > at >> > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:178) >> > at >> > >> > >> java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) >> > at >> > >> > >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) >> > at java.lang.Thread.run(Thread.java:662) >> > org.apache.spark.SparkException: Job aborted: Task 9.0:0 failed 1 times >> > (most recent failure: Exception failure: java.lang.NullPointerException) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1028) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler$$anonfun$org$apache$spark$scheduler$DAGScheduler$$abortStage$1.apply(DAGScheduler.scala:1026) >> > at >> > >> > >> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> > at >> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> > at org.apache.spark.scheduler.DAGScheduler.org >> > >> $apache$spark$scheduler$DAGScheduler$$abortStage(DAGScheduler.scala:1026) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler$$anonfun$processEvent$10.apply(DAGScheduler.scala:619) >> > at scala.Option.foreach(Option.scala:236) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler.processEvent(DAGScheduler.scala:619) >> > at >> > >> > >> org.apache.spark.scheduler.DAGScheduler$$anonfun$start$1$$anon$2$$anonfun$receive$1.applyOrElse(DAGScheduler.scala:207) >> > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) >> > at akka.actor.ActorCell.invoke(ActorCell.scala:456) >> > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) >> > at akka.dispatch.Mailbox.run(Mailbox.scala:219) >> > at >> > >> > >> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) >> > at >> scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) >> > at >> > >> > >> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) >> > at >> > scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) >> > at >> > >> > >> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) >> > >> > >> > any idea what might be happening here? >> > >> > -anurag >> > >> > >> > >> > -- >> > Twitter: @anuragphadke (https://twitter.com/#!/anuragphadke) >> > >> > > > > -- > Twitter: @anuragphadke (https://twitter.com/#!/anuragphadke) > -- Twitter: @anuragphadke (https://twitter.com/#!/anuragphadke)