Christoph Strobl created SOLR-12069:
---------------------------------------
Summary: Default operator parameter q.op ignored.
Key: SOLR-12069
URL: https://issues.apache.org/jira/browse/SOLR-12069
Project: Solr
Issue Type: Bug
Security Level: Public (Default Security Level. Issues are Public)
Components: query parsers
Affects Versions: 7.2
Reporter: Christoph Strobl
The {{q.op}} parameter as described in the [7.2 reference for the Standard
Query
Parser|http://lucene.apache.org/solr/guide/7_2/the-standard-query-parser.html#standard-query-parser-parameters]
does not get used when executing a query.
Reproduce via _techproducts_ example.
# {{./bin/solr -e tchproducts}}
# {{./bin/post -c techproducts example/exampledocs/*.xml}}
# {{http "http://localhost:8983/solr/techproducts/select?q=inStock:(true
false)&q.op=AND"}}
The search above is expected to return {{0}} results but instead matches all
{{21}} entries.
The response header lists the {{q.op}} parameter
{code:javascript}
{
"responseHeader": {
"QTime": 3,
"params": {
"debugQuery": "on",
"q": "inStock:(true false)",
"q.op": "AND"
},
"status": 0
},
// ...
}
{code}
The debug output is as follows:
{code:javascript}
debug": {
"QParser": "LuceneQParser",
"explain": {
"100-435805": "\n1.5869651 = sum of:\n 1.5869651 = weight(inStock:F in
31) [SchemaSimilarity], result of:\n 1.5869651 = score(doc=31,freq=1.0 =
termFreq=1.0\n), product of:\n 1.5869651 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 4.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"6H500F0": "\n0.22884157 = sum of:\n 0.22884157 = weight(inStock:T in 2)
[SchemaSimilarity], result of:\n 0.22884157 = score(doc=2,freq=1.0 =
termFreq=1.0\n), product of:\n 0.22884157 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 17.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"EN7800GTX/2DHTV/256M": "\n1.5869651 = sum of:\n 1.5869651 =
weight(inStock:F in 30) [SchemaSimilarity], result of:\n 1.5869651 =
score(doc=30,freq=1.0 = termFreq=1.0\n), product of:\n 1.5869651 = idf,
computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n
4.0 = docFreq\n 21.0 = docCount\n 1.0 = tfNorm, computed as (freq
* (k1 + 1)) / (freq + k1) from:\n 1.0 = termFreq=1.0\n 1.2 =
parameter k1\n 0.0 = parameter b (norms omitted for field)\n",
"F8V7067-APL-KIT": "\n1.5869651 = sum of:\n 1.5869651 = weight(inStock:F
in 3) [SchemaSimilarity], result of:\n 1.5869651 = score(doc=3,freq=1.0 =
termFreq=1.0\n), product of:\n 1.5869651 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 4.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"GB18030TEST": "\n0.22884157 = sum of:\n 0.22884157 = weight(inStock:T
in 0) [SchemaSimilarity], result of:\n 0.22884157 = score(doc=0,freq=1.0 =
termFreq=1.0\n), product of:\n 0.22884157 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 17.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"IW-02": "\n1.5869651 = sum of:\n 1.5869651 = weight(inStock:F in 4)
[SchemaSimilarity], result of:\n 1.5869651 = score(doc=4,freq=1.0 =
termFreq=1.0\n), product of:\n 1.5869651 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 4.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"MA147LL/A": "\n0.22884157 = sum of:\n 0.22884157 = weight(inStock:T in
5) [SchemaSimilarity], result of:\n 0.22884157 = score(doc=5,freq=1.0 =
termFreq=1.0\n), product of:\n 0.22884157 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 17.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"SP2514N": "\n0.22884157 = sum of:\n 0.22884157 = weight(inStock:T in 1)
[SchemaSimilarity], result of:\n 0.22884157 = score(doc=1,freq=1.0 =
termFreq=1.0\n), product of:\n 0.22884157 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 17.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n",
"TWINX2048-3200PRO": "\n0.22884157 = sum of:\n 0.22884157 =
weight(inStock:T in 17) [SchemaSimilarity], result of:\n 0.22884157 =
score(doc=17,freq=1.0 = termFreq=1.0\n), product of:\n 0.22884157 = idf,
computed as log(1 + (docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n
17.0 = docFreq\n 21.0 = docCount\n 1.0 = tfNorm, computed as (freq
* (k1 + 1)) / (freq + k1) from:\n 1.0 = termFreq=1.0\n 1.2 =
parameter k1\n 0.0 = parameter b (norms omitted for field)\n",
"VS1GB400C3": "\n0.22884157 = sum of:\n 0.22884157 = weight(inStock:T in
18) [SchemaSimilarity], result of:\n 0.22884157 = score(doc=18,freq=1.0 =
termFreq=1.0\n), product of:\n 0.22884157 = idf, computed as log(1 +
(docCount - docFreq + 0.5) / (docFreq + 0.5)) from:\n 17.0 = docFreq\n
21.0 = docCount\n 1.0 = tfNorm, computed as (freq * (k1 + 1)) / (freq
+ k1) from:\n 1.0 = termFreq=1.0\n 1.2 = parameter k1\n
0.0 = parameter b (norms omitted for field)\n"
},
"parsedquery": "+(+(inStock:true inStock:false))",
"parsedquery_toString": "+(+(inStock:T inStock:F))",
"querystring": "inStock:(true false)",
"rawquerystring": "inStock:(true false)",
"timing": {
// ...
{code}
--
This message was sent by Atlassian JIRA
(v7.6.3#76005)
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]