Hi Sun,

Thanks for reaching out. It looks like you're Hive metastore is not running
or is not reachable. The Hive metastore acts as a catalog to keep track of
all the tables that you've created. You can spin up a metastore using docker
<https://github.com/arempter/hive-metastore-docker>. It is recommended to
run it using Docker since it also requires an RDBMS as a backend, for
example, MySQL or Postgres. Another option is to use a REST catalog with
Iceberg. There is an example (including a Jupyter Notebook) available online
<https://github.com/tabular-io/docker-spark-iceberg>.

Let us know if this help!

Kind regards,
Fokko Driesprong


Op di 14 mrt 2023 om 06:03 schreef Sun Shine <myright...@hotmail.com>:


Op di 14 mrt 2023 om 06:03 schreef Sun Shine <myright...@hotmail.com>:

> Hello:
>
> I need some help with my pyspark config, as shown below. I don't know if
> there is a config issue or if I am missing jar files. Could someone please
> help to have a working pyspark config?
> I am using a standalone spark install on my server with jupyter lab. My
> goal is to create an Iceberg table using pyspark and then insert data into
> the Iceberg table. Once the config issue is resolved, and the Iceberg table
> is created, I can take it from there.
>
> Again, I would greatly appreciate any help you can give.
>
> *Jupyter Lab code:-*
>
> import pyspark
> from pyspark.sql import SparkSession
> from pyspark.sql.types import *
> from pyspark import SparkConf, SparkContext
>
>
> # Setup the Configuration
> sparkConf = pyspark.SparkConf()
>
> #sparkConf.set("spark.sql.extensions",
> "org.apache.iceberg.spark.extensions.IcebergsparkSessionExtensions")
> sparkConf.set("spark.sql.catalog.jay_catalog",
> "org.apache.iceberg.spark.SparkSessionCatalog")
> sparkConf.set("spark.sql.defaultCatalog ", "jay_catalog")
> sparkConf.set("spark.sql.catalog.jay_catalog.type", "hive")
> sparkConf.set("spark.jars", "/opt/spark/jars/hive-metastore-2.3.9.jar,
> /opt/spark/jars/spark-hive-thriftserver_2.12-3.2.0.jar,
> /opt/spark/jars/spark-hive_2.12-3.2.0.jar")
> sparkConf.set("spark.sql.hive.metastore.jars",
> "/opt/spark/jars/hive-metastore-2.3.9.jar,
> /opt/spark/jars/spark-hive-thriftserver_2.12-3.2.0.jar,
> /opt/spark/jars/spark-hive_2.12-3.2.0.jar")
> sparkConf.set("spark.jars.packages",
> "org.apache.iceberg:iceberg-spark-runtime-3.3_2.12:1.1.0")
> sparkConf.set("spark.sql.execution.pyarrow.enabled", "true")
> sparkConf.set("spark.sql.catalog.jay_catalog.uri",
> "thrift://localhost:9083")
> sparkConf.set("hive.metastore.uris", "thrift://localhost:9083")
> sparkConf.set("spark.sql.catalog.jay_catalog.warehouse",
> "/opt/spark/pysparkjay/spark-warehouse")
>
> spark2 = SparkSession.builder \
>           .appName("Iceberg App") \
>           .master("local[12]") \
>           .config(conf=sparkConf) \
>           .enableHiveSupport() \
>           .getOrCreate()
>
> print("Spark2 Running")
>
>
> # Creating Table in SpqrkSQL
> spark2.sql( \
> """CREATE TABLE IF NOT EXISTS jay_catalog.db.patient_ice \
> ( \
>     P_id bigint, \
>     P_gender string, \
>     P_DOB timestamp, \
>     P_race string\
> ) \
> USING iceberg \
> PARTITIONED BY (months(P_DOB))""" \
> );
>
> *Getting errors as shown below.*
>
> Py4JJavaError                             Traceback (most recent call
> last)
> <ipython-input-23-46552fb57bf5> in <module>
>       1 # Creating Table in SpqrkSQL
> ----> 2 spark2.sql( \
>       3 """CREATE TABLE IF NOT EXISTS jay_catalog.db.patient_ice \
>       4 ( \
>       5     P_id bigint, \
>
> /opt/spark/python/pyspark/sql/session.py in sql(self, sqlQuery)
>     721         [Row(f1=1, f2='row1'), Row(f1=2, f2='row2'), Row(f1=3,
> f2='row3')]
>     722         """
> --> 723         return DataFrame(self._jsparkSession.sql(sqlQuery),
> self._wrapped)
>     724
>     725     def table(self, tableName):
>
> ~/.local/lib/python3.8/site-packages/py4j/java_gateway.py in
> __call__(self, *args)
>    1302
>    1303         answer = self.gateway_client.send_command(command)
> -> 1304         return_value = get_return_value(
>    1305             answer, self.gateway_client, self.target_id, self.name
> )
>    1306
>
> /opt/spark/python/pyspark/sql/utils.py in deco(*a, **kw)
>     109     def deco(*a, **kw):
>     110         try:
> --> 111             return f(*a, **kw)
>     112         except py4j.protocol.Py4JJavaError as e:
>     113             converted = convert_exception(e.java_exception)
>
> ~/.local/lib/python3.8/site-packages/py4j/protocol.py in
> get_return_value(answer, gateway_client, target_id, name)
>     324             value = OUTPUT_CONVERTER[type](answer[2:],
> gateway_client)
>     325             if answer[1] == REFERENCE_TYPE:
> --> 326                 raise Py4JJavaError(
>     327                     "An error occurred while calling {0}{1}{2}.\n".
>     328                     format(target_id, ".", name), value)
>
> Py4JJavaError: An error occurred while calling o43.sql.
> : org.apache.iceberg.hive.RuntimeMetaException: Failed to connect to Hive
> Metastore
> at org.apache.iceberg.hive.HiveClientPool.newClient(HiveClientPool.java:84)
> at org.apache.iceberg.hive.HiveClientPool.newClient(HiveClientPool.java:34)
> at org.apache.iceberg.ClientPoolImpl.get(ClientPoolImpl.java:125)
> at org.apache.iceberg.ClientPoolImpl.run(ClientPoolImpl.java:56)
> at org.apache.iceberg.ClientPoolImpl.run(ClientPoolImpl.java:51)
> at org.apache.iceberg.hive.CachedClientPool.run(CachedClientPool.java:82)
> at
> org.apache.iceberg.hive.HiveTableOperations.doRefresh(HiveTableOperations.java:223)
> at
> org.apache.iceberg.BaseMetastoreTableOperations.refresh(BaseMetastoreTableOperations.java:97)
> at
> org.apache.iceberg.BaseMetastoreTableOperations.current(BaseMetastoreTableOperations.java:80)
> at
> org.apache.iceberg.BaseMetastoreCatalog.loadTable(BaseMetastoreCatalog.java:44)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.lambda$doComputeIfAbsent$14(BoundedLocalCache.java:2406)
> at
> java.base/java.util.concurrent.ConcurrentHashMap.compute(ConcurrentHashMap.java:1908)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.doComputeIfAbsent(BoundedLocalCache.java:2404)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.computeIfAbsent(BoundedLocalCache.java:2387)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.LocalCache.computeIfAbsent(LocalCache.java:108)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.LocalManualCache.get(LocalManualCache.java:62)
> at org.apache.iceberg.CachingCatalog.loadTable(CachingCatalog.java:166)
> at org.apache.iceberg.spark.SparkCatalog.load(SparkCatalog.java:608)
> at org.apache.iceberg.spark.SparkCatalog.loadTable(SparkCatalog.java:145)
> at
> org.apache.iceberg.spark.SparkSessionCatalog.loadTable(SparkSessionCatalog.java:134)
> at
> org.apache.spark.sql.connector.catalog.TableCatalog.tableExists(TableCatalog.java:119)
> at
> org.apache.spark.sql.execution.datasources.v2.CreateTableExec.run(CreateTableExec.scala:40)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:110)
> at
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
> at
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
> at
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:110)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:106)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
> at
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
> at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org
> $apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
> at
> org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
> at
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
> at
> org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:106)
> at
> org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:93)
> at
> org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:91)
> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:219)
> at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96)
> at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:618)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:613)
> at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.base/java.lang.reflect.Method.invoke(Method.java:566)
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
> at py4j.Gateway.invoke(Gateway.java:282)
> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79)
> at
> py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
> at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
> at java.base/java.lang.Thread.run(Thread.java:829)
> Caused by: java.lang.RuntimeException: Unable to instantiate
> org.apache.hadoop.hive.metastore.HiveMetaStoreClient
> at
> org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1742)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:83)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:133)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:97)
> at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.base/java.lang.reflect.Method.invoke(Method.java:566)
> at
> org.apache.iceberg.common.DynMethods$UnboundMethod.invokeChecked(DynMethods.java:60)
> at
> org.apache.iceberg.common.DynMethods$UnboundMethod.invoke(DynMethods.java:72)
> at
> org.apache.iceberg.common.DynMethods$StaticMethod.invoke(DynMethods.java:185)
> at org.apache.iceberg.hive.HiveClientPool.newClient(HiveClientPool.java:63)
> ... 63 more
> Caused by: java.lang.reflect.InvocationTargetException
> at
> java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
> at
> java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:490)
> at
> org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1740)
> ... 75 more
> Caused by: MetaException(message:Could not connect to meta store using any
> of the URIs provided. Most recent failure:
> org.apache.thrift.transport.TTransportException: java.net.ConnectException:
> Connection refused (Connection refused)
> at org.apache.thrift.transport.TSocket.open(TSocket.java:226)
> at
> org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:478)
> at
> org.apache.hadoop.hive.metastore.HiveMetaStoreClient.<init>(HiveMetaStoreClient.java:245)
> at
> java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
> at
> java.base/java.lang.reflect.Constructor.newInstance(Constructor.java:490)
> at
> org.apache.hadoop.hive.metastore.MetaStoreUtils.newInstance(MetaStoreUtils.java:1740)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.<init>(RetryingMetaStoreClient.java:83)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:133)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:104)
> at
> org.apache.hadoop.hive.metastore.RetryingMetaStoreClient.getProxy(RetryingMetaStoreClient.java:97)
> at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.base/java.lang.reflect.Method.invoke(Method.java:566)
> at
> org.apache.iceberg.common.DynMethods$UnboundMethod.invokeChecked(DynMethods.java:60)
> at
> org.apache.iceberg.common.DynMethods$UnboundMethod.invoke(DynMethods.java:72)
> at
> org.apache.iceberg.common.DynMethods$StaticMethod.invoke(DynMethods.java:185)
> at org.apache.iceberg.hive.HiveClientPool.newClient(HiveClientPool.java:63)
> at org.apache.iceberg.hive.HiveClientPool.newClient(HiveClientPool.java:34)
> at org.apache.iceberg.ClientPoolImpl.get(ClientPoolImpl.java:125)
> at org.apache.iceberg.ClientPoolImpl.run(ClientPoolImpl.java:56)
> at org.apache.iceberg.ClientPoolImpl.run(ClientPoolImpl.java:51)
> at org.apache.iceberg.hive.CachedClientPool.run(CachedClientPool.java:82)
> at
> org.apache.iceberg.hive.HiveTableOperations.doRefresh(HiveTableOperations.java:223)
> at
> org.apache.iceberg.BaseMetastoreTableOperations.refresh(BaseMetastoreTableOperations.java:97)
> at
> org.apache.iceberg.BaseMetastoreTableOperations.current(BaseMetastoreTableOperations.java:80)
> at
> org.apache.iceberg.BaseMetastoreCatalog.loadTable(BaseMetastoreCatalog.java:44)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.lambda$doComputeIfAbsent$14(BoundedLocalCache.java:2406)
> at
> java.base/java.util.concurrent.ConcurrentHashMap.compute(ConcurrentHashMap.java:1908)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.doComputeIfAbsent(BoundedLocalCache.java:2404)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.BoundedLocalCache.computeIfAbsent(BoundedLocalCache.java:2387)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.LocalCache.computeIfAbsent(LocalCache.java:108)
> at
> org.apache.iceberg.shaded.com.github.benmanes.caffeine.cache.LocalManualCache.get(LocalManualCache.java:62)
> at org.apache.iceberg.CachingCatalog.loadTable(CachingCatalog.java:166)
> at org.apache.iceberg.spark.SparkCatalog.load(SparkCatalog.java:608)
> at org.apache.iceberg.spark.SparkCatalog.loadTable(SparkCatalog.java:145)
> at
> org.apache.iceberg.spark.SparkSessionCatalog.loadTable(SparkSessionCatalog.java:134)
> at
> org.apache.spark.sql.connector.catalog.TableCatalog.tableExists(TableCatalog.java:119)
> at
> org.apache.spark.sql.execution.datasources.v2.CreateTableExec.run(CreateTableExec.scala:40)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:43)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:43)
> at
> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:49)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.$anonfun$applyOrElse$1(QueryExecution.scala:110)
> at
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:103)
> at
> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:163)
> at
> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:90)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at
> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:110)
> at
> org.apache.spark.sql.execution.QueryExecution$$anonfun$eagerlyExecuteCommands$1.applyOrElse(QueryExecution.scala:106)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.$anonfun$transformDownWithPruning$1(TreeNode.scala:481)
> at
> org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:82)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDownWithPruning(TreeNode.scala:481)
> at org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.org
> $apache$spark$sql$catalyst$plans$logical$AnalysisHelper$$super$transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning(AnalysisHelper.scala:267)
> at
> org.apache.spark.sql.catalyst.plans.logical.AnalysisHelper.transformDownWithPruning$(AnalysisHelper.scala:263)
> at
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.plans.logical.LogicalPlan.transformDownWithPruning(LogicalPlan.scala:30)
> at
> org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:457)
> at
> org.apache.spark.sql.execution.QueryExecution.eagerlyExecuteCommands(QueryExecution.scala:106)
> at
> org.apache.spark.sql.execution.QueryExecution.commandExecuted$lzycompute(QueryExecution.scala:93)
> at
> org.apache.spark.sql.execution.QueryExecution.commandExecuted(QueryExecution.scala:91)
> at org.apache.spark.sql.Dataset.<init>(Dataset.scala:219)
> at org.apache.spark.sql.Dataset$.$anonfun$ofRows$2(Dataset.scala:99)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:96)
> at org.apache.spark.sql.SparkSession.$anonfun$sql$1(SparkSession.scala:618)
> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:775)
> at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:613)
> at java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke0(Native
> Method)
> at
> java.base/jdk.internal.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
> at
> java.base/jdk.internal.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
> at java.base/java.lang.reflect.Method.invoke(Method.java:566)
> at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
> at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
> at py4j.Gateway.invoke(Gateway.java:282)
> at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
> at py4j.commands.CallCommand.execute(CallCommand.java:79)
> at
> py4j.ClientServerConnection.waitForCommands(ClientServerConnection.java:182)
> at py4j.ClientServerConnection.run(ClientServerConnection.java:106)
> at java.base/java.lang.Thread.run(Thread.java:829)
> Caused by: java.net.ConnectException: Connection refused (Connection
> refused)
> at java.base/java.net.PlainSocketImpl.socketConnect(Native Method)
> at
> java.base/java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:399)
> at
> java.base/java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:242)
> at
> java.base/java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:224)
> at java.base/java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
> at java.base/java.net.Socket.connect(Socket.java:609)
> at org.apache.thrift.transport.TSocket.open(TSocket.java:221)
> ... 82 more
> )
> at
> org.apache.hadoop.hive.metastore.HiveMetaStoreClient.open(HiveMetaStoreClient.java:527)
> at org.apache.hadoop.hive.metastore.Hi
>

Reply via email to