Should I go ahead and add this method then? The mapWithBcSet I mean. Regards Sachin Goel
On Tue, Jun 2, 2015 at 10:43 PM, Till Rohrmann <till.rohrm...@gmail.com> wrote: > Yes you’re right Sachin. The mapWithBcVariable is only syntactic sugar if > you have a broadcast DataSet which contains only one element. If you have > multiple elements in your DataSet then you can’t use this method. But we > can define another method mapWithBcSet which takes a function f: (element: > T, broadcastValues: List[B]) => O, for example. > > If you have multiple DataSet which fulfil this condition, then you can wrap > them in a tuple as you’ve said. > > Cheers, > Till > > > On Tue, Jun 2, 2015 at 7:10 PM, Sachin Goel <sachingoel0...@gmail.com> > wrote: > > > Further, I think we should return just > > broadcastVariable = getRuntimeContext. > > getBroadcastVariable[B]("broadcastVariable") > > in BroadcastSingleElementMapper > > User may wish to have a list broadcasted, and not just want to access the > > first element. For example, this would make sense in the kmeans > algorithm. > > > > Regards > > Sachin Goel > > > > On Tue, Jun 2, 2015 at 9:03 PM, Sachin Goel <sachingoel0...@gmail.com> > > wrote: > > > > > Hi Till > > > This works only when there is only one variable to be broadcasted, > > doesn't > > > it? What about the case when we need to broadcast two? Is it advisable > to > > > create a BroadcastDoubleElementMapper class or perhaps we could just > > send a > > > tuple of all the variables? Perhaps that is a better idea. > > > > > > Regards > > > Sachin Goel > > > > > > On Tue, Jun 2, 2015 at 8:15 PM, <trohrm...@apache.org> wrote: > > > > > >> [ml] Replaces RichMapFunctions with mapWithBcVariable in FlinkML > > >> > > >> > > >> Project: http://git-wip-us.apache.org/repos/asf/flink/repo > > >> Commit: http://git-wip-us.apache.org/repos/asf/flink/commit/950b79c5 > > >> Tree: http://git-wip-us.apache.org/repos/asf/flink/tree/950b79c5 > > >> Diff: http://git-wip-us.apache.org/repos/asf/flink/diff/950b79c5 > > >> > > >> Branch: refs/heads/master > > >> Commit: 950b79c59327e96e3b1504616d26460cbff7fd4c > > >> Parents: 44dae0c > > >> Author: Till Rohrmann <trohrm...@apache.org> > > >> Authored: Tue Jun 2 14:45:12 2015 +0200 > > >> Committer: Till Rohrmann <trohrm...@apache.org> > > >> Committed: Tue Jun 2 15:34:54 2015 +0200 > > >> > > >> ---------------------------------------------------------------------- > > >> .../apache/flink/ml/classification/SVM.scala | 73 > > ++++++-------------- > > >> .../flink/ml/preprocessing/StandardScaler.scala | 39 +++-------- > > >> 2 files changed, 30 insertions(+), 82 deletions(-) > > >> ---------------------------------------------------------------------- > > >> > > >> > > >> > > >> > > > http://git-wip-us.apache.org/repos/asf/flink/blob/950b79c5/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > > >> ---------------------------------------------------------------------- > > >> diff --git > > >> > > > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > > >> > > > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > > >> index e01735f..c69b56a 100644 > > >> --- > > >> > > > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > > >> +++ > > >> > > > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > > >> @@ -26,6 +26,7 @@ import scala.util.Random > > >> import org.apache.flink.api.common.functions.RichMapFunction > > >> import org.apache.flink.api.scala._ > > >> import org.apache.flink.configuration.Configuration > > >> +import org.apache.flink.ml._ > > >> import org.apache.flink.ml.common.FlinkMLTools.ModuloKeyPartitioner > > >> import org.apache.flink.ml.common._ > > >> import org.apache.flink.ml.math.Vector > > >> @@ -190,6 +191,7 @@ class SVM extends Predictor[SVM] { > > >> * of the algorithm. > > >> */ > > >> object SVM{ > > >> + > > >> val WEIGHT_VECTOR ="weightVector" > > >> > > >> // ========================================== Parameters > > >> ========================================= > > >> @@ -242,7 +244,13 @@ object SVM{ > > >> > > >> instance.weightsOption match { > > >> case Some(weights) => { > > >> - input.map(new > > PredictionMapper[T]).withBroadcastSet(weights, > > >> WEIGHT_VECTOR) > > >> + input.mapWithBcVariable(weights){ > > >> + (vector, weights) => { > > >> + val dotProduct = weights dot vector.asBreeze > > >> + > > >> + LabeledVector(dotProduct, vector) > > >> + } > > >> + } > > >> } > > >> > > >> case None => { > > >> @@ -254,28 +262,6 @@ object SVM{ > > >> } > > >> } > > >> > > >> - /** Mapper to calculate the value of the prediction function. This > is > > >> a RichMapFunction, because > > >> - * we broadcast the weight vector to all mappers. > > >> - */ > > >> - class PredictionMapper[T <: Vector] extends RichMapFunction[T, > > >> LabeledVector] { > > >> - > > >> - var weights: BreezeDenseVector[Double] = _ > > >> - > > >> - @throws(classOf[Exception]) > > >> - override def open(configuration: Configuration): Unit = { > > >> - // get current weights > > >> - weights = getRuntimeContext. > > >> - > > >> getBroadcastVariable[BreezeDenseVector[Double]](WEIGHT_VECTOR).get(0) > > >> - } > > >> - > > >> - override def map(vector: T): LabeledVector = { > > >> - // calculate the prediction value (scaled distance from the > > >> separating hyperplane) > > >> - val dotProduct = weights dot vector.asBreeze > > >> - > > >> - LabeledVector(dotProduct, vector) > > >> - } > > >> - } > > >> - > > >> /** [[org.apache.flink.ml.pipeline.PredictOperation]] for > > >> [[LabeledVector ]]types. The result type > > >> * is a [[(Double, Double)]] tuple, corresponding to (truth, > > >> prediction) > > >> * > > >> @@ -291,7 +277,14 @@ object SVM{ > > >> > > >> instance.weightsOption match { > > >> case Some(weights) => { > > >> - input.map(new > > >> LabeledPredictionMapper).withBroadcastSet(weights, WEIGHT_VECTOR) > > >> + input.mapWithBcVariable(weights){ > > >> + (labeledVector, weights) => { > > >> + val prediction = weights dot > > >> labeledVector.vector.asBreeze > > >> + val truth = labeledVector.label > > >> + > > >> + (truth, prediction) > > >> + } > > >> + } > > >> } > > >> > > >> case None => { > > >> @@ -303,30 +296,6 @@ object SVM{ > > >> } > > >> } > > >> > > >> - /** Mapper to calculate the value of the prediction function. This > is > > >> a RichMapFunction, because > > >> - * we broadcast the weight vector to all mappers. > > >> - */ > > >> - class LabeledPredictionMapper extends > RichMapFunction[LabeledVector, > > >> (Double, Double)] { > > >> - > > >> - var weights: BreezeDenseVector[Double] = _ > > >> - > > >> - @throws(classOf[Exception]) > > >> - override def open(configuration: Configuration): Unit = { > > >> - // get current weights > > >> - weights = getRuntimeContext. > > >> - > > >> getBroadcastVariable[BreezeDenseVector[Double]](WEIGHT_VECTOR).get(0) > > >> - } > > >> - > > >> - override def map(labeledVector: LabeledVector): (Double, Double) > = > > { > > >> - // calculate the prediction value (scaled distance from the > > >> separating hyperplane) > > >> - val prediction = weights dot labeledVector.vector.asBreeze > > >> - val truth = labeledVector.label > > >> - > > >> - (truth, prediction) > > >> - } > > >> - } > > >> - > > >> - > > >> /** [[FitOperation]] which trains a SVM with soft-margin based on > the > > >> given training data set. > > >> * > > >> */ > > >> @@ -540,17 +509,17 @@ object SVM{ > > >> > > >> // compute projected gradient > > >> var proj_grad = if(alpha <= 0.0){ > > >> - math.min(grad, 0) > > >> + scala.math.min(grad, 0) > > >> } else if(alpha >= 1.0) { > > >> - math.max(grad, 0) > > >> + scala.math.max(grad, 0) > > >> } else { > > >> grad > > >> } > > >> > > >> - if(math.abs(grad) != 0.0){ > > >> + if(scala.math.abs(grad) != 0.0){ > > >> val qii = x dot x > > >> val newAlpha = if(qii != 0.0){ > > >> - math.min(math.max((alpha - (grad / qii)), 0.0), 1.0) > > >> + scala.math.min(scala.math.max((alpha - (grad / qii)), 0.0), > > 1.0) > > >> } else { > > >> 1.0 > > >> } > > >> > > >> > > >> > > > http://git-wip-us.apache.org/repos/asf/flink/blob/950b79c5/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > > >> ---------------------------------------------------------------------- > > >> diff --git > > >> > > > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > > >> > > > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > > >> index 2e3ed95..7992b02 100644 > > >> --- > > >> > > > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > > >> +++ > > >> > > > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > > >> @@ -25,6 +25,7 @@ import org.apache.flink.api.common.functions._ > > >> import org.apache.flink.api.common.typeinfo.TypeInformation > > >> import org.apache.flink.api.scala._ > > >> import org.apache.flink.configuration.Configuration > > >> +import org.apache.flink.ml._ > > >> import org.apache.flink.ml.common.{LabeledVector, Parameter, > > >> ParameterMap} > > >> import org.apache.flink.ml.math.Breeze._ > > >> import org.apache.flink.ml.math.{BreezeVectorConverter, Vector} > > >> @@ -209,20 +210,9 @@ object StandardScaler { > > >> > > >> instance.metricsOption match { > > >> case Some(metrics) => { > > >> - input.map(new RichMapFunction[T, T]() { > > >> - > > >> - var broadcastMean: linalg.Vector[Double] = null > > >> - var broadcastStd: linalg.Vector[Double] = null > > >> - > > >> - override def open(parameters: Configuration): Unit = { > > >> - val broadcastedMetrics = > > >> getRuntimeContext().getBroadcastVariable[ > > >> - (linalg.Vector[Double], linalg.Vector[Double]) > > >> - ]("broadcastedMetrics").get(0) > > >> - broadcastMean = broadcastedMetrics._1 > > >> - broadcastStd = broadcastedMetrics._2 > > >> - } > > >> - > > >> - override def map(vector: T): T = { > > >> + input.mapWithBcVariable(metrics){ > > >> + (vector, metrics) => { > > >> + val (broadcastMean, broadcastStd) = metrics > > >> var myVector = vector.asBreeze > > >> > > >> myVector -= broadcastMean > > >> @@ -230,7 +220,7 @@ object StandardScaler { > > >> myVector = (myVector :* std) + mean > > >> myVector.fromBreeze > > >> } > > >> - }).withBroadcastSet(metrics, "broadcastedMetrics") > > >> + } > > >> } > > >> > > >> case None => > > >> @@ -251,20 +241,9 @@ object StandardScaler { > > >> > > >> instance.metricsOption match { > > >> case Some(metrics) => { > > >> - input.map(new RichMapFunction[LabeledVector, > > >> LabeledVector]() { > > >> - > > >> - var broadcastMean: linalg.Vector[Double] = null > > >> - var broadcastStd: linalg.Vector[Double] = null > > >> - > > >> - override def open(parameters: Configuration): Unit = { > > >> - val broadcastedMetrics = > > >> getRuntimeContext().getBroadcastVariable[ > > >> - (linalg.Vector[Double], linalg.Vector[Double]) > > >> - ]("broadcastedMetrics").get(0) > > >> - broadcastMean = broadcastedMetrics._1 > > >> - broadcastStd = broadcastedMetrics._2 > > >> - } > > >> - > > >> - override def map(labeledVector: LabeledVector): > > >> LabeledVector = { > > >> + input.mapWithBcVariable(metrics){ > > >> + (labeledVector, metrics) => { > > >> + val (broadcastMean, broadcastStd) = metrics > > >> val LabeledVector(label, vector) = labeledVector > > >> var breezeVector = vector.asBreeze > > >> > > >> @@ -273,7 +252,7 @@ object StandardScaler { > > >> breezeVector = (breezeVector :* std) + mean > > >> LabeledVector(label, breezeVector.fromBreeze[Vector]) > > >> } > > >> - }).withBroadcastSet(metrics, "broadcastedMetrics") > > >> + } > > >> } > > >> > > >> case None => > > >> > > >> > > > > > >