Yes you’re right Sachin. The mapWithBcVariable is only syntactic sugar if you have a broadcast DataSet which contains only one element. If you have multiple elements in your DataSet then you can’t use this method. But we can define another method mapWithBcSet which takes a function f: (element: T, broadcastValues: List[B]) => O, for example.
If you have multiple DataSet which fulfil this condition, then you can wrap them in a tuple as you’ve said. Cheers, Till On Tue, Jun 2, 2015 at 7:10 PM, Sachin Goel <sachingoel0...@gmail.com> wrote: > Further, I think we should return just > broadcastVariable = getRuntimeContext. > getBroadcastVariable[B]("broadcastVariable") > in BroadcastSingleElementMapper > User may wish to have a list broadcasted, and not just want to access the > first element. For example, this would make sense in the kmeans algorithm. > > Regards > Sachin Goel > > On Tue, Jun 2, 2015 at 9:03 PM, Sachin Goel <sachingoel0...@gmail.com> > wrote: > > > Hi Till > > This works only when there is only one variable to be broadcasted, > doesn't > > it? What about the case when we need to broadcast two? Is it advisable to > > create a BroadcastDoubleElementMapper class or perhaps we could just > send a > > tuple of all the variables? Perhaps that is a better idea. > > > > Regards > > Sachin Goel > > > > On Tue, Jun 2, 2015 at 8:15 PM, <trohrm...@apache.org> wrote: > > > >> [ml] Replaces RichMapFunctions with mapWithBcVariable in FlinkML > >> > >> > >> Project: http://git-wip-us.apache.org/repos/asf/flink/repo > >> Commit: http://git-wip-us.apache.org/repos/asf/flink/commit/950b79c5 > >> Tree: http://git-wip-us.apache.org/repos/asf/flink/tree/950b79c5 > >> Diff: http://git-wip-us.apache.org/repos/asf/flink/diff/950b79c5 > >> > >> Branch: refs/heads/master > >> Commit: 950b79c59327e96e3b1504616d26460cbff7fd4c > >> Parents: 44dae0c > >> Author: Till Rohrmann <trohrm...@apache.org> > >> Authored: Tue Jun 2 14:45:12 2015 +0200 > >> Committer: Till Rohrmann <trohrm...@apache.org> > >> Committed: Tue Jun 2 15:34:54 2015 +0200 > >> > >> ---------------------------------------------------------------------- > >> .../apache/flink/ml/classification/SVM.scala | 73 > ++++++-------------- > >> .../flink/ml/preprocessing/StandardScaler.scala | 39 +++-------- > >> 2 files changed, 30 insertions(+), 82 deletions(-) > >> ---------------------------------------------------------------------- > >> > >> > >> > >> > http://git-wip-us.apache.org/repos/asf/flink/blob/950b79c5/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > >> ---------------------------------------------------------------------- > >> diff --git > >> > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > >> > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > >> index e01735f..c69b56a 100644 > >> --- > >> > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > >> +++ > >> > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/classification/SVM.scala > >> @@ -26,6 +26,7 @@ import scala.util.Random > >> import org.apache.flink.api.common.functions.RichMapFunction > >> import org.apache.flink.api.scala._ > >> import org.apache.flink.configuration.Configuration > >> +import org.apache.flink.ml._ > >> import org.apache.flink.ml.common.FlinkMLTools.ModuloKeyPartitioner > >> import org.apache.flink.ml.common._ > >> import org.apache.flink.ml.math.Vector > >> @@ -190,6 +191,7 @@ class SVM extends Predictor[SVM] { > >> * of the algorithm. > >> */ > >> object SVM{ > >> + > >> val WEIGHT_VECTOR ="weightVector" > >> > >> // ========================================== Parameters > >> ========================================= > >> @@ -242,7 +244,13 @@ object SVM{ > >> > >> instance.weightsOption match { > >> case Some(weights) => { > >> - input.map(new > PredictionMapper[T]).withBroadcastSet(weights, > >> WEIGHT_VECTOR) > >> + input.mapWithBcVariable(weights){ > >> + (vector, weights) => { > >> + val dotProduct = weights dot vector.asBreeze > >> + > >> + LabeledVector(dotProduct, vector) > >> + } > >> + } > >> } > >> > >> case None => { > >> @@ -254,28 +262,6 @@ object SVM{ > >> } > >> } > >> > >> - /** Mapper to calculate the value of the prediction function. This is > >> a RichMapFunction, because > >> - * we broadcast the weight vector to all mappers. > >> - */ > >> - class PredictionMapper[T <: Vector] extends RichMapFunction[T, > >> LabeledVector] { > >> - > >> - var weights: BreezeDenseVector[Double] = _ > >> - > >> - @throws(classOf[Exception]) > >> - override def open(configuration: Configuration): Unit = { > >> - // get current weights > >> - weights = getRuntimeContext. > >> - > >> getBroadcastVariable[BreezeDenseVector[Double]](WEIGHT_VECTOR).get(0) > >> - } > >> - > >> - override def map(vector: T): LabeledVector = { > >> - // calculate the prediction value (scaled distance from the > >> separating hyperplane) > >> - val dotProduct = weights dot vector.asBreeze > >> - > >> - LabeledVector(dotProduct, vector) > >> - } > >> - } > >> - > >> /** [[org.apache.flink.ml.pipeline.PredictOperation]] for > >> [[LabeledVector ]]types. The result type > >> * is a [[(Double, Double)]] tuple, corresponding to (truth, > >> prediction) > >> * > >> @@ -291,7 +277,14 @@ object SVM{ > >> > >> instance.weightsOption match { > >> case Some(weights) => { > >> - input.map(new > >> LabeledPredictionMapper).withBroadcastSet(weights, WEIGHT_VECTOR) > >> + input.mapWithBcVariable(weights){ > >> + (labeledVector, weights) => { > >> + val prediction = weights dot > >> labeledVector.vector.asBreeze > >> + val truth = labeledVector.label > >> + > >> + (truth, prediction) > >> + } > >> + } > >> } > >> > >> case None => { > >> @@ -303,30 +296,6 @@ object SVM{ > >> } > >> } > >> > >> - /** Mapper to calculate the value of the prediction function. This is > >> a RichMapFunction, because > >> - * we broadcast the weight vector to all mappers. > >> - */ > >> - class LabeledPredictionMapper extends RichMapFunction[LabeledVector, > >> (Double, Double)] { > >> - > >> - var weights: BreezeDenseVector[Double] = _ > >> - > >> - @throws(classOf[Exception]) > >> - override def open(configuration: Configuration): Unit = { > >> - // get current weights > >> - weights = getRuntimeContext. > >> - > >> getBroadcastVariable[BreezeDenseVector[Double]](WEIGHT_VECTOR).get(0) > >> - } > >> - > >> - override def map(labeledVector: LabeledVector): (Double, Double) = > { > >> - // calculate the prediction value (scaled distance from the > >> separating hyperplane) > >> - val prediction = weights dot labeledVector.vector.asBreeze > >> - val truth = labeledVector.label > >> - > >> - (truth, prediction) > >> - } > >> - } > >> - > >> - > >> /** [[FitOperation]] which trains a SVM with soft-margin based on the > >> given training data set. > >> * > >> */ > >> @@ -540,17 +509,17 @@ object SVM{ > >> > >> // compute projected gradient > >> var proj_grad = if(alpha <= 0.0){ > >> - math.min(grad, 0) > >> + scala.math.min(grad, 0) > >> } else if(alpha >= 1.0) { > >> - math.max(grad, 0) > >> + scala.math.max(grad, 0) > >> } else { > >> grad > >> } > >> > >> - if(math.abs(grad) != 0.0){ > >> + if(scala.math.abs(grad) != 0.0){ > >> val qii = x dot x > >> val newAlpha = if(qii != 0.0){ > >> - math.min(math.max((alpha - (grad / qii)), 0.0), 1.0) > >> + scala.math.min(scala.math.max((alpha - (grad / qii)), 0.0), > 1.0) > >> } else { > >> 1.0 > >> } > >> > >> > >> > http://git-wip-us.apache.org/repos/asf/flink/blob/950b79c5/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > >> ---------------------------------------------------------------------- > >> diff --git > >> > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > >> > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > >> index 2e3ed95..7992b02 100644 > >> --- > >> > a/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > >> +++ > >> > b/flink-staging/flink-ml/src/main/scala/org/apache/flink/ml/preprocessing/StandardScaler.scala > >> @@ -25,6 +25,7 @@ import org.apache.flink.api.common.functions._ > >> import org.apache.flink.api.common.typeinfo.TypeInformation > >> import org.apache.flink.api.scala._ > >> import org.apache.flink.configuration.Configuration > >> +import org.apache.flink.ml._ > >> import org.apache.flink.ml.common.{LabeledVector, Parameter, > >> ParameterMap} > >> import org.apache.flink.ml.math.Breeze._ > >> import org.apache.flink.ml.math.{BreezeVectorConverter, Vector} > >> @@ -209,20 +210,9 @@ object StandardScaler { > >> > >> instance.metricsOption match { > >> case Some(metrics) => { > >> - input.map(new RichMapFunction[T, T]() { > >> - > >> - var broadcastMean: linalg.Vector[Double] = null > >> - var broadcastStd: linalg.Vector[Double] = null > >> - > >> - override def open(parameters: Configuration): Unit = { > >> - val broadcastedMetrics = > >> getRuntimeContext().getBroadcastVariable[ > >> - (linalg.Vector[Double], linalg.Vector[Double]) > >> - ]("broadcastedMetrics").get(0) > >> - broadcastMean = broadcastedMetrics._1 > >> - broadcastStd = broadcastedMetrics._2 > >> - } > >> - > >> - override def map(vector: T): T = { > >> + input.mapWithBcVariable(metrics){ > >> + (vector, metrics) => { > >> + val (broadcastMean, broadcastStd) = metrics > >> var myVector = vector.asBreeze > >> > >> myVector -= broadcastMean > >> @@ -230,7 +220,7 @@ object StandardScaler { > >> myVector = (myVector :* std) + mean > >> myVector.fromBreeze > >> } > >> - }).withBroadcastSet(metrics, "broadcastedMetrics") > >> + } > >> } > >> > >> case None => > >> @@ -251,20 +241,9 @@ object StandardScaler { > >> > >> instance.metricsOption match { > >> case Some(metrics) => { > >> - input.map(new RichMapFunction[LabeledVector, > >> LabeledVector]() { > >> - > >> - var broadcastMean: linalg.Vector[Double] = null > >> - var broadcastStd: linalg.Vector[Double] = null > >> - > >> - override def open(parameters: Configuration): Unit = { > >> - val broadcastedMetrics = > >> getRuntimeContext().getBroadcastVariable[ > >> - (linalg.Vector[Double], linalg.Vector[Double]) > >> - ]("broadcastedMetrics").get(0) > >> - broadcastMean = broadcastedMetrics._1 > >> - broadcastStd = broadcastedMetrics._2 > >> - } > >> - > >> - override def map(labeledVector: LabeledVector): > >> LabeledVector = { > >> + input.mapWithBcVariable(metrics){ > >> + (labeledVector, metrics) => { > >> + val (broadcastMean, broadcastStd) = metrics > >> val LabeledVector(label, vector) = labeledVector > >> var breezeVector = vector.asBreeze > >> > >> @@ -273,7 +252,7 @@ object StandardScaler { > >> breezeVector = (breezeVector :* std) + mean > >> LabeledVector(label, breezeVector.fromBreeze[Vector]) > >> } > >> - }).withBroadcastSet(metrics, "broadcastedMetrics") > >> + } > >> } > >> > >> case None => > >> > >> > > >