> +struct lcore_state {
> +     uint64_t a;
> +     uint64_t b;
> +     uint64_t sum;
> +};
> +
> +static __rte_always_inline void
> +update(struct lcore_state *state)
> +{
> +     state->sum += state->a * state->b;
> +}
> +
> +static RTE_DEFINE_PER_LCORE(struct lcore_state, tls_lcore_state);
> +
> +static __rte_noinline void
> +tls_update(void)
> +{
> +     update(&RTE_PER_LCORE(tls_lcore_state));

I would normally access TLS variables directly, not through a pointer, i.e.:

RTE_PER_LCORE(tls_lcore_state.sum) += RTE_PER_LCORE(tls_lcore_state.a) * 
RTE_PER_LCORE(tls_lcore_state.b);

On the other hand, then it wouldn't be 1:1 comparable to the two other test 
cases.

Besides, I expect the compiler to optimize away the indirect access, and 
produce the same output (as for the alternative implementation) anyway.

No change requested. Just noticing.

> +}
> +
> +struct __rte_cache_aligned lcore_state_aligned {
> +     uint64_t a;
> +     uint64_t b;
> +     uint64_t sum;

Please add RTE_CACHE_GUARD here, for 100 % matching the common design pattern.

> +};
> +
> +static struct lcore_state_aligned sarray_lcore_state[RTE_MAX_LCORE];


> +     printf("Latencies [ns/update]\n");
> +     printf("Thread-local storage  Static array  Lcore variables\n");
> +     printf("%20.1f %13.1f %16.1f\n", tls_latency * 1e9,
> +            sarray_latency * 1e9, lvar_latency * 1e9);

I prefer cycles over ns. Perhaps you could show both?


With RTE_CACHE_GUARD added where mentioned,

Acked-by: Morten Brørup <m...@smartsharesystems.com>

Reply via email to