Adding functions to create and configure queues.

Signed-off-by: Nicolas Chautru <nicolas.chau...@intel.com>
---
 drivers/baseband/acc101/rte_acc101_pmd.c | 543 ++++++++++++++++++++++++++++++-
 drivers/baseband/acc101/rte_acc101_pmd.h |  46 +++
 2 files changed, 588 insertions(+), 1 deletion(-)

diff --git a/drivers/baseband/acc101/rte_acc101_pmd.c 
b/drivers/baseband/acc101/rte_acc101_pmd.c
index 9518a9e..e490e97 100644
--- a/drivers/baseband/acc101/rte_acc101_pmd.c
+++ b/drivers/baseband/acc101/rte_acc101_pmd.c
@@ -29,6 +29,22 @@
 RTE_LOG_REGISTER_DEFAULT(acc101_logtype, NOTICE);
 #endif
 
+/* Write to MMIO register address */
+static inline void
+mmio_write(void *addr, uint32_t value)
+{
+       *((volatile uint32_t *)(addr)) = rte_cpu_to_le_32(value);
+}
+
+/* Write a register of a ACC101 device */
+static inline void
+acc101_reg_write(struct acc101_device *d, uint32_t offset, uint32_t value)
+{
+       void *reg_addr = RTE_PTR_ADD(d->mmio_base, offset);
+       mmio_write(reg_addr, value);
+       usleep(ACC101_LONG_WAIT);
+}
+
 /* Read a register of a ACC101 device */
 static inline uint32_t
 acc101_reg_read(struct acc101_device *d, uint32_t offset)
@@ -38,6 +54,22 @@
        return rte_le_to_cpu_32(ret);
 }
 
+/* Basic Implementation of Log2 for exact 2^N */
+static inline uint32_t
+log2_basic(uint32_t value)
+{
+       return (value == 0) ? 0 : rte_bsf32(value);
+}
+
+/* Calculate memory alignment offset assuming alignment is 2^N */
+static inline uint32_t
+calc_mem_alignment_offset(void *unaligned_virt_mem, uint32_t alignment)
+{
+       rte_iova_t unaligned_phy_mem = rte_malloc_virt2iova(unaligned_virt_mem);
+       return (uint32_t)(alignment -
+                       (unaligned_phy_mem & (alignment-1)));
+}
+
 /* Calculate the offset of the enqueue register */
 static inline uint32_t
 queue_offset(bool pf_device, uint8_t vf_id, uint8_t qgrp_id, uint16_t aq_id)
@@ -184,6 +216,9 @@
                                        ACC101_NUM_QGRPS_PER_WORD) * 4))
                                        & 0xF;
        }
+       /* Start Pmon */
+       acc101_reg_write(d, reg_addr->pmon_ctrl_a, 0x2);
+       acc101_reg_write(d, reg_addr->pmon_ctrl_b, 0x2);
 
        /* Read PF mode */
        if (d->pf_device) {
@@ -210,11 +245,513 @@
                        acc101_conf->q_dl_5g.aq_depth_log2);
 }
 
+static inline void
+acc101_vf2pf(struct acc101_device *d, unsigned int payload)
+{
+       acc101_reg_write(d, HWVfHiVfToPfDbellVf, payload);
+}
+
+static void
+free_base_addresses(void **base_addrs, int size)
+{
+       int i;
+       for (i = 0; i < size; i++)
+               rte_free(base_addrs[i]);
+}
+
+static inline uint32_t
+get_desc_len(void)
+{
+       return sizeof(union acc101_dma_desc);
+}
+
+/* Allocate the 2 * 64MB block for the sw rings */
+static int
+alloc_2x64mb_sw_rings_mem(struct rte_bbdev *dev, struct acc101_device *d,
+               int socket)
+{
+       uint32_t sw_ring_size = ACC101_SIZE_64MBYTE;
+       d->sw_rings_base = rte_zmalloc_socket(dev->device->driver->name,
+                       2 * sw_ring_size, RTE_CACHE_LINE_SIZE, socket);
+       if (d->sw_rings_base == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate memory for %s:%u",
+                               dev->device->driver->name,
+                               dev->data->dev_id);
+               return -ENOMEM;
+       }
+       uint32_t next_64mb_align_offset = calc_mem_alignment_offset(
+                       d->sw_rings_base, ACC101_SIZE_64MBYTE);
+       d->sw_rings = RTE_PTR_ADD(d->sw_rings_base, next_64mb_align_offset);
+       d->sw_rings_iova = rte_malloc_virt2iova(d->sw_rings_base) +
+                       next_64mb_align_offset;
+       d->sw_ring_size = ACC101_MAX_QUEUE_DEPTH * get_desc_len();
+       d->sw_ring_max_depth = ACC101_MAX_QUEUE_DEPTH;
+
+       return 0;
+}
+
+/* Attempt to allocate minimised memory space for sw rings */
+static void
+alloc_sw_rings_min_mem(struct rte_bbdev *dev, struct acc101_device *d,
+               uint16_t num_queues, int socket)
+{
+       rte_iova_t sw_rings_base_iova, next_64mb_align_addr_iova;
+       uint32_t next_64mb_align_offset;
+       rte_iova_t sw_ring_iova_end_addr;
+       void *base_addrs[ACC101_SW_RING_MEM_ALLOC_ATTEMPTS];
+       void *sw_rings_base;
+       int i = 0;
+       uint32_t q_sw_ring_size = ACC101_MAX_QUEUE_DEPTH * get_desc_len();
+       uint32_t dev_sw_ring_size = q_sw_ring_size * num_queues;
+       /* Free first in case this is a reconfiguration */
+       rte_free(d->sw_rings_base);
+
+       /* Find an aligned block of memory to store sw rings */
+       while (i < ACC101_SW_RING_MEM_ALLOC_ATTEMPTS) {
+               /*
+                * sw_ring allocated memory is guaranteed to be aligned to
+                * q_sw_ring_size at the condition that the requested size is
+                * less than the page size
+                */
+               sw_rings_base = rte_zmalloc_socket(
+                               dev->device->driver->name,
+                               dev_sw_ring_size, q_sw_ring_size, socket);
+
+               if (sw_rings_base == NULL) {
+                       rte_bbdev_log(ERR,
+                                       "Failed to allocate memory for %s:%u",
+                                       dev->device->driver->name,
+                                       dev->data->dev_id);
+                       break;
+               }
+
+               sw_rings_base_iova = rte_malloc_virt2iova(sw_rings_base);
+               next_64mb_align_offset = calc_mem_alignment_offset(
+                               sw_rings_base, ACC101_SIZE_64MBYTE);
+               next_64mb_align_addr_iova = sw_rings_base_iova +
+                               next_64mb_align_offset;
+               sw_ring_iova_end_addr = sw_rings_base_iova + dev_sw_ring_size;
+
+               /* Check if the end of the sw ring memory block is before the
+                * start of next 64MB aligned mem address
+                */
+               if (sw_ring_iova_end_addr < next_64mb_align_addr_iova) {
+                       d->sw_rings_iova = sw_rings_base_iova;
+                       d->sw_rings = sw_rings_base;
+                       d->sw_rings_base = sw_rings_base;
+                       d->sw_ring_size = q_sw_ring_size;
+                       d->sw_ring_max_depth = ACC101_MAX_QUEUE_DEPTH;
+                       break;
+               }
+               /* Store the address of the unaligned mem block */
+               base_addrs[i] = sw_rings_base;
+               i++;
+       }
+
+       /* Free all unaligned blocks of mem allocated in the loop */
+       free_base_addresses(base_addrs, i);
+}
+
+/* Allocate 64MB memory used for all software rings */
+static int
+acc101_setup_queues(struct rte_bbdev *dev, uint16_t num_queues, int socket_id)
+{
+       uint32_t phys_low, phys_high, value;
+       struct acc101_device *d = dev->data->dev_private;
+       const struct acc101_registry_addr *reg_addr;
+
+       if (d->pf_device && !d->acc101_conf.pf_mode_en) {
+               rte_bbdev_log(NOTICE,
+                               "%s has PF mode disabled. This PF can't be 
used.",
+                               dev->data->name);
+               return -ENODEV;
+       }
+
+       alloc_sw_rings_min_mem(dev, d, num_queues, socket_id);
+
+       /* If minimal memory space approach failed, then allocate
+        * the 2 * 64MB block for the sw rings
+        */
+       if (d->sw_rings == NULL)
+               alloc_2x64mb_sw_rings_mem(dev, d, socket_id);
+
+       if (d->sw_rings == NULL) {
+               rte_bbdev_log(NOTICE,
+                               "Failure allocating sw_rings memory");
+               return -ENODEV;
+       }
+
+       /* Configure ACC101 with the base address for DMA descriptor rings
+        * Same descriptor rings used for UL and DL DMA Engines
+        * Note : Assuming only VF0 bundle is used for PF mode
+        */
+       phys_high = (uint32_t)(d->sw_rings_iova >> 32);
+       phys_low  = (uint32_t)(d->sw_rings_iova & ~(ACC101_SIZE_64MBYTE-1));
+
+       /* Choose correct registry addresses for the device type */
+       if (d->pf_device)
+               reg_addr = &pf_reg_addr;
+       else
+               reg_addr = &vf_reg_addr;
+
+       /* Read the populated cfg from ACC101 registers */
+       fetch_acc101_config(dev);
+
+       /* Release AXI from PF with 2 ms threshold */
+       if (d->pf_device) {
+               usleep(2000);
+               acc101_reg_write(d, HWPfDmaAxiControl, 1);
+       }
+
+       acc101_reg_write(d, reg_addr->dma_ring_ul5g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->dma_ring_ul5g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->dma_ring_dl5g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->dma_ring_dl5g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->dma_ring_ul4g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->dma_ring_ul4g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->dma_ring_dl4g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->dma_ring_dl4g_lo, phys_low);
+
+       /*
+        * Configure Ring Size to the max queue ring size
+        * (used for wrapping purpose)
+        */
+       value = log2_basic(d->sw_ring_size / 64);
+       acc101_reg_write(d, reg_addr->ring_size, value);
+
+       /* Configure tail pointer for use when SDONE enabled */
+       if (d->tail_ptrs == NULL)
+               d->tail_ptrs = rte_zmalloc_socket(
+                               dev->device->driver->name,
+                               ACC101_NUM_QGRPS * ACC101_NUM_AQS * 
sizeof(uint32_t),
+                               RTE_CACHE_LINE_SIZE, socket_id);
+       if (d->tail_ptrs == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate tail ptr for %s:%u",
+                               dev->device->driver->name,
+                               dev->data->dev_id);
+               rte_free(d->sw_rings);
+               return -ENOMEM;
+       }
+       d->tail_ptr_iova = rte_malloc_virt2iova(d->tail_ptrs);
+
+       phys_high = (uint32_t)(d->tail_ptr_iova >> 32);
+       phys_low  = (uint32_t)(d->tail_ptr_iova);
+       acc101_reg_write(d, reg_addr->tail_ptrs_ul5g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->tail_ptrs_ul5g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->tail_ptrs_dl5g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->tail_ptrs_dl5g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->tail_ptrs_ul4g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->tail_ptrs_ul4g_lo, phys_low);
+       acc101_reg_write(d, reg_addr->tail_ptrs_dl4g_hi, phys_high);
+       acc101_reg_write(d, reg_addr->tail_ptrs_dl4g_lo, phys_low);
+
+       if (d->harq_layout == NULL)
+               d->harq_layout = rte_zmalloc_socket("HARQ Layout",
+                               ACC101_HARQ_LAYOUT * sizeof(*d->harq_layout),
+                               RTE_CACHE_LINE_SIZE, dev->data->socket_id);
+       if (d->harq_layout == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate harq_layout for %s:%u",
+                               dev->device->driver->name,
+                               dev->data->dev_id);
+               rte_free(d->sw_rings);
+               return -ENOMEM;
+       }
+
+       /* Mark as configured properly */
+       d->configured = true;
+       acc101_vf2pf(d, ACC101_VF2PF_USING_VF);
+
+       rte_bbdev_log_debug(
+                       "ACC101 (%s) configured  sw_rings = %p, sw_rings_iova = 
%#"
+                       PRIx64, dev->data->name, d->sw_rings, d->sw_rings_iova);
+
+       return 0;
+}
+
 /* Free memory used for software rings */
 static int
 acc101_dev_close(struct rte_bbdev *dev)
 {
-       RTE_SET_USED(dev);
+       struct acc101_device *d = dev->data->dev_private;
+       if (d->sw_rings_base != NULL) {
+               rte_free(d->tail_ptrs);
+               rte_free(d->sw_rings_base);
+               rte_free(d->harq_layout);
+               d->sw_rings_base = NULL;
+       }
+       return 0;
+}
+
+/**
+ * Report a ACC101 queue index which is free
+ * Return 0 to 16k for a valid queue_idx or -1 when no queue is available
+ * Note : Only supporting VF0 Bundle for PF mode
+ */
+static int
+acc101_find_free_queue_idx(struct rte_bbdev *dev,
+               const struct rte_bbdev_queue_conf *conf)
+{
+       struct acc101_device *d = dev->data->dev_private;
+       int op_2_acc[5] = {0, UL_4G, DL_4G, UL_5G, DL_5G};
+       int acc = op_2_acc[conf->op_type];
+       struct rte_acc101_queue_topology *qtop = NULL;
+
+       qtopFromAcc(&qtop, acc, &(d->acc101_conf));
+       if (qtop == NULL)
+               return -1;
+       /* Identify matching QGroup Index which are sorted in priority order */
+       uint16_t group_idx = qtop->first_qgroup_index;
+       group_idx += conf->priority;
+       if (group_idx >= ACC101_NUM_QGRPS ||
+                       conf->priority >= qtop->num_qgroups) {
+               rte_bbdev_log(INFO, "Invalid Priority on %s, priority %u",
+                               dev->data->name, conf->priority);
+               return -1;
+       }
+       /* Find a free AQ_idx  */
+       uint16_t aq_idx;
+       for (aq_idx = 0; aq_idx < qtop->num_aqs_per_groups; aq_idx++) {
+               if (((d->q_assigned_bit_map[group_idx] >> aq_idx) & 0x1) == 0) {
+                       /* Mark the Queue as assigned */
+                       d->q_assigned_bit_map[group_idx] |= (1 << aq_idx);
+                       /* Report the AQ Index */
+                       return (group_idx << ACC101_GRP_ID_SHIFT) + aq_idx;
+               }
+       }
+       rte_bbdev_log(INFO, "Failed to find free queue on %s, priority %u",
+                       dev->data->name, conf->priority);
+       return -1;
+}
+
+/* Setup ACC101 queue */
+static int
+acc101_queue_setup(struct rte_bbdev *dev, uint16_t queue_id,
+               const struct rte_bbdev_queue_conf *conf)
+{
+       struct acc101_device *d = dev->data->dev_private;
+       struct acc101_queue *q;
+       int16_t q_idx;
+
+       if (d == NULL) {
+               rte_bbdev_log(ERR, "Undefined device");
+               return -ENODEV;
+       }
+       /* Allocate the queue data structure. */
+       q = rte_zmalloc_socket(dev->device->driver->name, sizeof(*q),
+                       RTE_CACHE_LINE_SIZE, conf->socket);
+       if (q == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate queue memory");
+               return -ENOMEM;
+       }
+
+       q->d = d;
+       q->ring_addr = RTE_PTR_ADD(d->sw_rings, (d->sw_ring_size * queue_id));
+       q->ring_addr_iova = d->sw_rings_iova + (d->sw_ring_size * queue_id);
+
+       /* Prepare the Ring with default descriptor format */
+       union acc101_dma_desc *desc = NULL;
+       unsigned int desc_idx, b_idx;
+       int fcw_len = (conf->op_type == RTE_BBDEV_OP_LDPC_ENC ?
+               ACC101_FCW_LE_BLEN : (conf->op_type == RTE_BBDEV_OP_TURBO_DEC ?
+               ACC101_FCW_TD_BLEN : ACC101_FCW_LD_BLEN));
+
+       for (desc_idx = 0; desc_idx < d->sw_ring_max_depth; desc_idx++) {
+               desc = q->ring_addr + desc_idx;
+               desc->req.word0 = ACC101_DMA_DESC_TYPE;
+               desc->req.word1 = 0; /**< Timestamp */
+               desc->req.word2 = 0;
+               desc->req.word3 = 0;
+               uint64_t fcw_offset = (desc_idx << 8) + ACC101_DESC_FCW_OFFSET;
+               desc->req.data_ptrs[0].address = q->ring_addr_iova + fcw_offset;
+               desc->req.data_ptrs[0].blen = fcw_len;
+               desc->req.data_ptrs[0].blkid = ACC101_DMA_BLKID_FCW;
+               desc->req.data_ptrs[0].last = 0;
+               desc->req.data_ptrs[0].dma_ext = 0;
+               for (b_idx = 1; b_idx < ACC101_DMA_MAX_NUM_POINTERS - 1;
+                               b_idx++) {
+                       desc->req.data_ptrs[b_idx].blkid = ACC101_DMA_BLKID_IN;
+                       desc->req.data_ptrs[b_idx].last = 1;
+                       desc->req.data_ptrs[b_idx].dma_ext = 0;
+                       b_idx++;
+                       desc->req.data_ptrs[b_idx].blkid =
+                                       ACC101_DMA_BLKID_OUT_ENC;
+                       desc->req.data_ptrs[b_idx].last = 1;
+                       desc->req.data_ptrs[b_idx].dma_ext = 0;
+               }
+               /* Preset some fields of LDPC FCW */
+               desc->req.fcw_ld.FCWversion = ACC101_FCW_VER;
+               desc->req.fcw_ld.gain_i = 1;
+               desc->req.fcw_ld.gain_h = 1;
+       }
+
+       q->lb_in = rte_zmalloc_socket(dev->device->driver->name,
+                       RTE_CACHE_LINE_SIZE,
+                       RTE_CACHE_LINE_SIZE, conf->socket);
+       if (q->lb_in == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate lb_in memory");
+               rte_free(q);
+               return -ENOMEM;
+       }
+       q->lb_in_addr_iova = rte_malloc_virt2iova(q->lb_in);
+       q->lb_out = rte_zmalloc_socket(dev->device->driver->name,
+                       RTE_CACHE_LINE_SIZE,
+                       RTE_CACHE_LINE_SIZE, conf->socket);
+       if (q->lb_out == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate lb_out memory");
+               rte_free(q->lb_in);
+               rte_free(q);
+               return -ENOMEM;
+       }
+       q->derm_buffer = rte_zmalloc_socket(dev->device->driver->name,
+                       RTE_BBDEV_TURBO_MAX_CB_SIZE * 10,
+                       RTE_CACHE_LINE_SIZE, conf->socket);
+       if (q->derm_buffer == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate derm_buffer memory");
+               rte_free(q->lb_in);
+               rte_free(q->lb_out);
+               rte_free(q);
+               return -ENOMEM;
+       }
+       q->lb_out_addr_iova = rte_malloc_virt2iova(q->lb_out);
+       q->companion_ring_addr = rte_zmalloc_socket(dev->device->driver->name,
+                       d->sw_ring_max_depth * sizeof(*q->companion_ring_addr),
+                       RTE_CACHE_LINE_SIZE, conf->socket);
+       if (q->companion_ring_addr == NULL) {
+               rte_bbdev_log(ERR, "Failed to allocate companion_ring memory");
+               rte_free(q->derm_buffer);
+               rte_free(q->lb_in);
+               rte_free(q->lb_out);
+               rte_free(q);
+               return -ENOMEM;
+       }
+
+       /*
+        * Software queue ring wraps synchronously with the HW when it reaches
+        * the boundary of the maximum allocated queue size, no matter what the
+        * sw queue size is. This wrapping is guarded by setting the wrap_mask
+        * to represent the maximum queue size as allocated at the time when
+        * the device has been setup (in configure()).
+        *
+        * The queue depth is set to the queue size value (conf->queue_size).
+        * This limits the occupancy of the queue at any point of time, so that
+        * the queue does not get swamped with enqueue requests.
+        */
+       q->sw_ring_depth = conf->queue_size;
+       q->sw_ring_wrap_mask = d->sw_ring_max_depth - 1;
+
+       q->op_type = conf->op_type;
+
+       q_idx = acc101_find_free_queue_idx(dev, conf);
+       if (q_idx == -1) {
+               rte_free(q->companion_ring_addr);
+               rte_free(q->derm_buffer);
+               rte_free(q->lb_in);
+               rte_free(q->lb_out);
+               rte_free(q);
+               return -1;
+       }
+
+       q->qgrp_id = (q_idx >> ACC101_GRP_ID_SHIFT) & 0xF;
+       q->vf_id = (q_idx >> ACC101_VF_ID_SHIFT)  & 0x3F;
+       q->aq_id = q_idx & 0xF;
+       q->aq_depth = 0;
+       if (conf->op_type ==  RTE_BBDEV_OP_TURBO_DEC)
+               q->aq_depth = (1 << d->acc101_conf.q_ul_4g.aq_depth_log2);
+       else if (conf->op_type ==  RTE_BBDEV_OP_TURBO_ENC)
+               q->aq_depth = (1 << d->acc101_conf.q_dl_4g.aq_depth_log2);
+       else if (conf->op_type ==  RTE_BBDEV_OP_LDPC_DEC)
+               q->aq_depth = (1 << d->acc101_conf.q_ul_5g.aq_depth_log2);
+       else if (conf->op_type ==  RTE_BBDEV_OP_LDPC_ENC)
+               q->aq_depth = (1 << d->acc101_conf.q_dl_5g.aq_depth_log2);
+
+       q->mmio_reg_enqueue = RTE_PTR_ADD(d->mmio_base,
+                       queue_offset(d->pf_device,
+                                       q->vf_id, q->qgrp_id, q->aq_id));
+
+       rte_bbdev_log_debug(
+                       "Setup dev%u q%u: qgrp_id=%u, vf_id=%u, aq_id=%u, 
aq_depth=%u, mmio_reg_enqueue=%p",
+                       dev->data->dev_id, queue_id, q->qgrp_id, q->vf_id,
+                       q->aq_id, q->aq_depth, q->mmio_reg_enqueue);
+
+       dev->data->queues[queue_id].queue_private = q;
+
+       return 0;
+}
+
+static inline void
+acc101_print_op(struct rte_bbdev_dec_op *op, enum rte_bbdev_op_type op_type,
+               uint16_t index)
+{
+       if (op == NULL)
+               return;
+       if (op_type == RTE_BBDEV_OP_LDPC_DEC)
+               rte_bbdev_log(INFO,
+                       "  Op 5GUL %d %d %d %d %d %d %d %d %d %d %d %d",
+                       index,
+                       op->ldpc_dec.basegraph, op->ldpc_dec.z_c,
+                       op->ldpc_dec.n_cb, op->ldpc_dec.q_m,
+                       op->ldpc_dec.n_filler, op->ldpc_dec.cb_params.e,
+                       op->ldpc_dec.op_flags, op->ldpc_dec.rv_index,
+                       op->ldpc_dec.iter_max, op->ldpc_dec.iter_count,
+                       op->ldpc_dec.harq_combined_input.length
+                       );
+       else if (op_type == RTE_BBDEV_OP_LDPC_ENC) {
+               struct rte_bbdev_enc_op *op_dl = (struct rte_bbdev_enc_op *) op;
+               rte_bbdev_log(INFO,
+                       "  Op 5GDL %d %d %d %d %d %d %d %d %d",
+                       index,
+                       op_dl->ldpc_enc.basegraph, op_dl->ldpc_enc.z_c,
+                       op_dl->ldpc_enc.n_cb, op_dl->ldpc_enc.q_m,
+                       op_dl->ldpc_enc.n_filler, op_dl->ldpc_enc.cb_params.e,
+                       op_dl->ldpc_enc.op_flags, op_dl->ldpc_enc.rv_index
+                       );
+       }
+}
+
+static int
+acc101_queue_stop(struct rte_bbdev *dev, uint16_t queue_id)
+{
+       struct acc101_queue *q;
+       struct rte_bbdev_dec_op *op;
+       uint16_t i;
+       q = dev->data->queues[queue_id].queue_private;
+       rte_bbdev_log(INFO, "Queue Stop %d H/T/D %d %d %x OpType %d",
+                       queue_id, q->sw_ring_head, q->sw_ring_tail,
+                       q->sw_ring_depth, q->op_type);
+       for (i = 0; i < q->sw_ring_depth; ++i) {
+               op = (q->ring_addr + i)->req.op_addr;
+               acc101_print_op(op, q->op_type, i);
+       }
+       /* ignore all operations in flight and clear counters */
+       q->sw_ring_tail = q->sw_ring_head;
+       q->aq_enqueued = 0;
+       q->aq_dequeued = 0;
+       dev->data->queues[queue_id].queue_stats.enqueued_count = 0;
+       dev->data->queues[queue_id].queue_stats.dequeued_count = 0;
+       dev->data->queues[queue_id].queue_stats.enqueue_err_count = 0;
+       dev->data->queues[queue_id].queue_stats.dequeue_err_count = 0;
+       return 0;
+}
+
+/* Release ACC101 queue */
+static int
+acc101_queue_release(struct rte_bbdev *dev, uint16_t q_id)
+{
+       struct acc101_device *d = dev->data->dev_private;
+       struct acc101_queue *q = dev->data->queues[q_id].queue_private;
+
+       if (q != NULL) {
+               /* Mark the Queue as un-assigned */
+               d->q_assigned_bit_map[q->qgrp_id] &= (0xFFFFFFFF -
+                               (1 << q->aq_id));
+               rte_free(q->companion_ring_addr);
+               rte_free(q->derm_buffer);
+               rte_free(q->lb_in);
+               rte_free(q->lb_out);
+               rte_free(q);
+               dev->data->queues[q_id].queue_private = NULL;
+       }
+
        return 0;
 }
 
@@ -263,8 +800,12 @@
 }
 
 static const struct rte_bbdev_ops acc101_bbdev_ops = {
+       .setup_queues = acc101_setup_queues,
        .close = acc101_dev_close,
        .info_get = acc101_dev_info_get,
+       .queue_setup = acc101_queue_setup,
+       .queue_release = acc101_queue_release,
+       .queue_stop = acc101_queue_stop,
 };
 
 /* ACC101 PCI PF address map */
diff --git a/drivers/baseband/acc101/rte_acc101_pmd.h 
b/drivers/baseband/acc101/rte_acc101_pmd.h
index 9c0e711..65cab8a 100644
--- a/drivers/baseband/acc101/rte_acc101_pmd.h
+++ b/drivers/baseband/acc101/rte_acc101_pmd.h
@@ -54,6 +54,10 @@
 /* Values used in writing to the registers */
 #define ACC101_REG_IRQ_EN_ALL          0x1FF83FF  /* Enable all interrupts */
 
+/* ACC101 Specific Dimensioning */
+#define ACC101_SIZE_64MBYTE            (64*1024*1024)
+/* Number of elements in an Info Ring */
+#define ACC101_INFO_RING_NUM_ENTRIES   1024
 /* Number of elements in HARQ layout memory
  * 128M x 32kB = 4GB addressable memory
  */
@@ -88,6 +92,16 @@
 #define ACC101_DMA_MAX_NUM_POINTERS_IN    7
 #define ACC101_DMA_DESC_PADDING           8
 #define ACC101_FCW_PADDING                12
+#define ACC101_DESC_FCW_OFFSET            192
+#define ACC101_DESC_SIZE                  256
+#define ACC101_DESC_OFFSET                (ACC101_DESC_SIZE / 64)
+#define ACC101_FCW_TE_BLEN                32
+#define ACC101_FCW_TD_BLEN                24
+#define ACC101_FCW_LE_BLEN                32
+#define ACC101_FCW_LD_BLEN                36
+#define ACC101_5GUL_SIZE_0                16
+#define ACC101_5GUL_SIZE_1                40
+#define ACC101_5GUL_OFFSET_0              36
 #define ACC101_COMPANION_PTRS             8
 
 #define ACC101_FCW_VER         2
@@ -479,6 +493,38 @@ struct acc101_registry_addr {
        .pmon_ctrl_b = HWVfPmBCntrlRegVf,
 };
 
+/* Structure associated with each queue. */
+struct __rte_cache_aligned acc101_queue {
+       union acc101_dma_desc *ring_addr;  /* Virtual address of sw ring */
+       rte_iova_t ring_addr_iova;  /* IOVA address of software ring */
+       uint32_t sw_ring_head;  /* software ring head */
+       uint32_t sw_ring_tail;  /* software ring tail */
+       /* software ring size (descriptors, not bytes) */
+       uint32_t sw_ring_depth;
+       /* mask used to wrap enqueued descriptors on the sw ring */
+       uint32_t sw_ring_wrap_mask;
+       /* Virtual address of companion ring */
+       struct acc101_ptrs *companion_ring_addr;
+       /* MMIO register used to enqueue descriptors */
+       void *mmio_reg_enqueue;
+       uint8_t vf_id;  /* VF ID (max = 63) */
+       uint8_t qgrp_id;  /* Queue Group ID */
+       uint16_t aq_id;  /* Atomic Queue ID */
+       uint16_t aq_depth;  /* Depth of atomic queue */
+       uint32_t aq_enqueued;  /* Count how many "batches" have been enqueued */
+       uint32_t aq_dequeued;  /* Count how many "batches" have been dequeued */
+       uint32_t irq_enable;  /* Enable ops dequeue interrupts if set to 1 */
+       struct rte_mempool *fcw_mempool;  /* FCW mempool */
+       enum rte_bbdev_op_type op_type;  /* Type of this Queue: TE or TD */
+       /* Internal Buffers for loopback input */
+       uint8_t *lb_in;
+       uint8_t *lb_out;
+       rte_iova_t lb_in_addr_iova;
+       rte_iova_t lb_out_addr_iova;
+       int8_t *derm_buffer; /* interim buffer for de-rm in SDK */
+       struct acc101_device *d;
+};
+
 /* Private data structure for each ACC101 device */
 struct acc101_device {
        void *mmio_base;  /**< Base address of MMIO registers (BAR0) */
-- 
1.8.3.1

Reply via email to