On Mon, 29 Sep 2025 07:18:42 GMT, Xiaohong Gong <[email protected]> wrote:
>> This patch adds mid-end support for vectorized add/mul reduction operations
>> for half floats. It also includes backend aarch64 support for these
>> operations. Only vectorization support through autovectorization is added as
>> VectorAPI currently does not support Float16 vector species.
>>
>> Both add and mul reduction vectorized through autovectorization mandate the
>> implementation to be strictly ordered. The following is how each of these
>> reductions is implemented for different aarch64 targets -
>>
>> **For AddReduction :**
>> On Neon only targets (UseSVE = 0): Generates scalarized additions using the
>> scalar `fadd` instruction for both 8B and 16B vector lengths. This is
>> because Neon does not provide a direct instruction for computing strictly
>> ordered floating point add reduction.
>>
>> On SVE targets (UseSVE > 0): Generates the `fadda` instruction which
>> computes add reduction for floating point in strict order.
>>
>> **For MulReduction :**
>> Both Neon and SVE do not provide a direct instruction for computing strictly
>> ordered floating point multiply reduction. For vector lengths of 8B and 16B,
>> a scalarized sequence of scalar `fmul` instructions is generated and
>> multiply reduction for vector lengths > 16B is not supported.
>>
>> Below is the performance of the two newly added microbenchmarks in
>> `Float16OperationsBenchmark.java` tested on three different aarch64 machines
>> and with varying `MaxVectorSize` -
>>
>> Note: On all machines, the score (ops/ms) is compared with the master branch
>> without this patch which generates a sequence of loads (`ldrsh`) to load the
>> FP16 value into an FPR and a scalar `fadd/fmul` to add/multiply the loaded
>> value to the running sum/product. The ratios given below are the ratios
>> between the throughput with this patch and the throughput without this patch.
>> Ratio > 1 indicates the performance with this patch is better than the
>> master branch.
>>
>> **N1 (UseSVE = 0, max vector length = 16B):**
>>
>> Benchmark vectorDim Mode Cnt 8B 16B
>> ReductionAddFP16 256 thrpt 9 1.41 1.40
>> ReductionAddFP16 512 thrpt 9 1.41 1.41
>> ReductionAddFP16 1024 thrpt 9 1.43 1.40
>> ReductionAddFP16 2048 thrpt 9 1.43 1.40
>> ReductionMulFP16 256 thrpt 9 1.22 1.22
>> ReductionMulFP16 512 thrpt 9 1.21 1.23
>> ReductionMulFP16 1024 thrpt 9 1.21 1.22
>> ReductionMulFP16 2048 thrpt 9 1.20 1.22
>>
>>
>> On N1, the scalarized sequence of `fadd/fmul` are gener...
>
> src/hotspot/cpu/aarch64/aarch64_vector.ad line 272:
>
>> 270: if (length_in_bytes > 16 || !is_feat_fp16_supported()) {
>> 271: return false;
>> 272: }
>
> Reductions with `length_in_bytes < 8` should also be skipped. Because such
> operations are not supported now, while the IRs with 32-bit vector size might
> exist, right?
Hi @XiaohongGong, yes `length_in_bytes < 8` is also not supported and currently
we support only for vector lengths of 8B and 16B.
IRs with 32-bit vector size might exist but we do not have an optimized
implementation for 32B vector lengths and thus I have disabled it. Instead of
that, it generates the 16B scalarized Neon instruction sequence for a 32B
vector length. Is this what you were asking?
-------------
PR Review Comment: https://git.openjdk.org/jdk/pull/27526#discussion_r2397961057