On Fri, 7 Feb 2025 12:39:24 GMT, Galder Zamarreño <gal...@openjdk.org> wrote:
>> This patch intrinsifies `Math.max(long, long)` and `Math.min(long, long)` in >> order to help improve vectorization performance. >> >> Currently vectorization does not kick in for loops containing either of >> these calls because of the following error: >> >> >> VLoop::check_preconditions: failed: control flow in loop not allowed >> >> >> The control flow is due to the java implementation for these methods, e.g. >> >> >> public static long max(long a, long b) { >> return (a >= b) ? a : b; >> } >> >> >> This patch intrinsifies the calls to replace the CmpL + Bool nodes for >> MaxL/MinL nodes respectively. >> By doing this, vectorization no longer finds the control flow and so it can >> carry out the vectorization. >> E.g. >> >> >> SuperWord::transform_loop: >> Loop: N518/N126 counted [int,int),+4 (1025 iters) main has_sfpt >> strip_mined >> 518 CountedLoop === 518 246 126 [[ 513 517 518 242 521 522 422 210 ]] >> inner stride: 4 main of N518 strip mined !orig=[419],[247],[216],[193] >> !jvms: Test::test @ bci:14 (line 21) >> >> >> Applying the same changes to `ReductionPerf` as in >> https://github.com/openjdk/jdk/pull/13056, we can compare the results before >> and after. Before the patch, on darwin/aarch64 (M1): >> >> >> ============================== >> Test summary >> ============================== >> TEST TOTAL PASS FAIL ERROR >> jtreg:test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java >> 1 1 0 0 >> ============================== >> TEST SUCCESS >> >> long min 1155 >> long max 1173 >> >> >> After the patch, on darwin/aarch64 (M1): >> >> >> ============================== >> Test summary >> ============================== >> TEST TOTAL PASS FAIL ERROR >> jtreg:test/hotspot/jtreg/compiler/loopopts/superword/ReductionPerf.java >> 1 1 0 0 >> ============================== >> TEST SUCCESS >> >> long min 1042 >> long max 1042 >> >> >> This patch does not add an platform-specific backend implementations for the >> MaxL/MinL nodes. >> Therefore, it still relies on the macro expansion to transform those into >> CMoveL. >> >> I've run tier1 and hotspot compiler tests on darwin/aarch64 and got these >> results: >> >> >> ============================== >> Test summary >> ============================== >> TEST TOTAL PA... > > Galder Zamarreño has updated the pull request with a new target base due to a > merge or a rebase. The incremental webrev excludes the unrelated changes > brought in by the merge/rebase. The pull request contains 44 additional > commits since the last revision: > > - Merge branch 'master' into topic.intrinsify-max-min-long > - Fix typo > - Renaming methods and variables and add docu on algorithms > - Fix copyright years > - Make sure it runs with cpus with either avx512 or asimd > - Test can only run with 256 bit registers or bigger > > * Remove platform dependant check > and use platform independent configuration instead. > - Fix license header > - Tests should also run on aarch64 asimd=true envs > - Added comment around the assertions > - Adjust min/max identity IR test expectations after changes > - ... and 34 more: https://git.openjdk.org/jdk/compare/6ad0c61a...a190ae68 What is happening with int min/max needs a separate investigation because based on my testing, the int min/max intrinsic is both a regression and a performance improvement! Check this out: make test TEST="micro:org.openjdk.bench.java.lang.MinMaxVector.intReductionSimpleMax" MICRO="FORK=1" Benchmark (probability) (size) Mode Cnt Score Error Units MinMaxVector.intReductionSimpleMax 50 2048 thrpt 4 460.585 ± 0.348 ops/ms MinMaxVector.intReductionSimpleMax 80 2048 thrpt 4 460.633 ± 0.103 ops/ms MinMaxVector.intReductionSimpleMax 100 2048 thrpt 4 460.580 ± 0.091 ops/ms make test TEST="micro:org.openjdk.bench.java.lang.MinMaxVector.intReductionSimpleMax" MICRO="FORK=1;OPTIONS=-jvmArgs -XX:CompileCommand=option,org.openjdk.bench.java.lang.jmh_generated.MinMaxVector_intReductionSimpleMax_jmhTest::intReductionSimpleMax_thrpt_jmhStub,ccstrlist,DisableIntrinsic,_max" Benchmark (probability) (size) Mode Cnt Score Error Units MinMaxVector.intReductionSimpleMax 50 2048 thrpt 4 460.479 ± 0.044 ops/ms MinMaxVector.intReductionSimpleMax 80 2048 thrpt 4 460.587 ± 0.106 ops/ms MinMaxVector.intReductionSimpleMax 100 2048 thrpt 4 1027.831 ± 9.353 ops/ms 80%: ││ │ 0x00007ffb200fa089: cmpl %r11d, %r10d 3.04% ││ │ 0x00007ffb200fa08c: cmovll %r11d, %r10d 4.38% ││ │ 0x00007ffb200fa090: cmpl %ebx, %r10d 1.61% ││ │ 0x00007ffb200fa093: cmovll %ebx, %r10d 2.79% ││ │ 0x00007ffb200fa097: cmpl %edi, %r10d 2.92% ││ │ 0x00007ffb200fa09a: cmovll %edi, %r10d ;*ireturn {reexecute=0 rethrow=0 return_oop=0} ││ │ ; - java.lang.Math::max@10 (line 2023) ││ │ ; - org.openjdk.bench.java.lang.MinMaxVector::intReductionSimpleMax@23 (line 232) 100%: 3.11% │││││││ ││││││ │ 0x00007f26c00f8f9c: nopl (%rax) 3.31% │││││││ ││││││ │ 0x00007f26c00f8fa0: cmpl %r10d, %ecx │││││││╭ ││││││ │ 0x00007f26c00f8fa3: jge 0x7f26c00f8ff1 ;*ireturn {reexecute=0 rethrow=0 return_oop=0} ││││││││ ││││││ │ ; - java.lang.Math::max@10 (line 2023) ││││││││ ││││││ │ ; - org.openjdk.bench.java.lang.MinMaxVector::intReductionSimpleMax@23 (line 232) ││││││││ ││││││ │ ; - org.openjdk.bench.java.lang.jmh_generated.MinMaxVector_intReductionSimpleMax_jmhTest::intReductionSimpleMax_thrpt_jmhStub@19 (line 124) make test TEST="micro:org.openjdk.bench.java.lang.MinMaxVector.intReductionMultiplyMax" MICRO="FORK=1" Benchmark (probability) (size) Mode Cnt Score Error Units MinMaxVector.intReductionMultiplyMax 50 2048 thrpt 4 2815.614 ± 0.406 ops/ms MinMaxVector.intReductionMultiplyMax 80 2048 thrpt 4 2814.943 ± 2.174 ops/ms MinMaxVector.intReductionMultiplyMax 100 2048 thrpt 4 2815.285 ± 1.725 ops/ms make test TEST="micro:org.openjdk.bench.java.lang.MinMaxVector.intReductionMultiplyMax" MICRO="FORK=1;OPTIONS=-jvmArgs -XX:CompileCommand=option,org.openjdk.bench.java.lang.jmh_generated.MinMaxVector_intReductionMultiplyMax_jmhTest::intReductionMultiplyMax_thrpt_jmhStub,ccstrlist,DisableIntrinsic,_max" Benchmark (probability) (size) Mode Cnt Score Error Units MinMaxVector.intReductionMultiplyMax 50 2048 thrpt 4 2802.062 ± 0.710 ops/ms MinMaxVector.intReductionMultiplyMax 80 2048 thrpt 4 2814.874 ± 4.058 ops/ms MinMaxVector.intReductionMultiplyMax 100 2048 thrpt 4 883.879 ± 0.327 ops/ms 80%: 3.54% │ ││ │││││ 0x00007faa700fa177: vpmaxsd %ymm4, %ymm5, %ymm13;*ireturn {reexecute=0 rethrow=0 return_oop=0} │ ││ │││││ ; - java.lang.Math::max@10 (line 2023) 100: 7.50% ││││││││││││││││││↗ │ 0x00007f75280f8849: imull $0xb, 0x2c(%rbp, %r11, 4), %r10d │││││││││││││││││││ │ ;*imul {reexecute=0 rethrow=0 return_oop=0} │││││││││││││││││││ │ ; - org.openjdk.bench.java.lang.MinMaxVector::intReductionMultiplyMax@20 (line 221) │││││││││││││││││││ │ ; - org.openjdk.bench.java.lang.jmh_generated.MinMaxVector_intReductionMultiplyMax_jmhTest::intReductionMultiplyMax_thrpt_jmhStub@19 (line 124) 3.85% │││││││││││││││││││ │ 0x00007f75280f884f: cmpl %r10d, %r8d ││││││││││╰││││││││ │ 0x00007f75280f8852: jl 0x7f75280f87d0 ;*if_icmplt {reexecute=0 rethrow=0 return_oop=0} ││││││││││ ││││││││ │ ; - java.lang.Math::max@2 (line 2023) ││││││││││ ││││││││ │ ; - org.openjdk.bench.java.lang.MinMaxVector::intReductionMultiplyMax@26 (line 222) ││││││││││ ││││││││ │ ; - org.openjdk.bench.java.lang.jmh_generated.MinMaxVector_intReductionMultiplyMax_jmhTest::intReductionMultiplyMax_thrpt_jmhStub@19 (line 124) I ran the exact same test with longs and I don't see such an issue. The performance is always the same either with the intrisinc or disabling it as shown above. ------------- PR Comment: https://git.openjdk.org/jdk/pull/20098#issuecomment-2664871838