On Sat, 12 Oct 2024 17:37:25 GMT, fabioromano1 <d...@openjdk.org> wrote:
>> An optimized algorithm for `BigDecimal.stripTrailingZeros()` that uses >> repeated squares trick. > > fabioromano1 has updated the pull request incrementally with one additional > commit since the last revision: > > Minor change After the proposed modifications, which aim to clarify the numeric aspects, I'll wait for a couple of days before approval for you to commit possible last minute changes. src/java.base/share/classes/java/math/BigDecimal.java line 5242: > 5240: } > 5241: > 5242: private static final double LOG_5_OF_2 = Math.log(2.0) / > Math.log(5.0); Suggestion: private static final double LOG_5_OF_2 = 0.43067655807339306; // double closest to log5(2) to be sure that `LOG_5_OF_2` is the best possible, although it doesn't matter much. src/java.base/share/classes/java/math/BigDecimal.java line 5270: > 5268: > 5269: intVal = intVal.shiftRight(powsOf2); // remove powers of 2 > 5270: // maxPowsOf5 >= floor(log5(intVal)) >= max{n : (intVal % 5^n) > == 0} Suggestion: // Let k = max{n : (intVal % 5^n) == 0}, m = max{n : 5^n <= intVal}, so m >= k. // Let b = intVal.bitLength(). It can be shown that // | b * LOG_5_OF_2 - b log5(2) | < 2^(-21) (fp viz. real arithmetic), // which entails m <= maxPowsOf5 <= m + 1, where maxPowsOf5 is as below. // Hence, maxPowsOf5 >= k and is never off by more than 1 from the theoretical m. ------------- PR Review: https://git.openjdk.org/jdk/pull/21323#pullrequestreview-2364917422 PR Review Comment: https://git.openjdk.org/jdk/pull/21323#discussion_r1798328808 PR Review Comment: https://git.openjdk.org/jdk/pull/21323#discussion_r1798329279