The Vector API `"indexInRange(int offset, int limit)"` is used to compute a vector mask whose lanes are set to true if the index of the lane is inside the range specified by the `"offset"` and `"limit"` arguments, otherwise the lanes are set to false.
There are two special cases for this API: 1) If `"offset >= 0 && offset >= limit"`, all the lanes of the generated mask are false. 2) If` "offset >= 0 && limit - offset >= vlength"`, all the lanes of the generated mask are true. Note that `"vlength"` is the number of vector lanes. For such special cases, we can simply use `"maskAll(false|true)"` to implement the API. Otherwise, the original comparison with `"iota" `vector is needed. And for further optimization, we have optimal instruction supported by SVE (i.e. whilelo [1]), which can implement the API directly if the `"offset >= 0"`. As a summary, to optimize the API, we can use the if-else branches to handle the specific cases in java level and intrinsify the remaining case by C2 compiler: public VectorMask<E> indexInRange(int offset, int limit) { if (offset < 0) { return this.and(indexInRange0Helper(offset, limit)); } else if (offset >= limit) { return this.and(vectorSpecies().maskAll(false)); } else if (limit - offset >= length()) { return this.and(vectorSpecies().maskAll(true)); } return this.and(indexInRange0(offset, limit)); } The last part (i.e. `"indexInRange0"`) in the above implementation is expected to be intrinsified by C2 compiler if the necessary IRs are supported. Otherwise, it will fall back to the original API implementation (i.e. `"indexInRange0Helper"`). Regarding to the intrinsifaction, the compiler will generate `"VectorMaskGen"` IR with "limit - offset" as the input if the current platform supports it. Otherwise, it generates `"VectorLoadConst + VectorMaskCmp"` based on `"iota < limit - offset"`. For the following java code which uses `"indexInRange"`: static final VectorSpecies<Double> SPECIES = DoubleVector.SPECIES_PREFERRED; static final int LENGTH = 1027; public static double[] da; public static double[] db; public static double[] dc; private static void func() { for (int i = 0; i < LENGTH; i += SPECIES.length()) { var m = SPECIES.indexInRange(i, LENGTH); var av = DoubleVector.fromArray(SPECIES, da, i, m); av.lanewise(VectorOperators.NEG).intoArray(dc, i, m); } } The core code generated with SVE 256-bit vector size is: ptrue p2.d ; maskAll(true) ... LOOP: ... sub w11, w13, w14 ; limit - offset cmp w14, w13 b.cs LABEL-1 ; if (offset >= limit) => uncommon-trap cmp w11, #0x4 b.lt LABEL-2 ; if (limit - offset < vlength) mov p1.b, p2.b LABEL-3: ld1d {z16.d}, p1/z, [x10] ; load vector masked ... cmp w14, w29 b.cc LOOP ... LABEL-2: whilelo p1.d, x16, x10 ; VectorMaskGen ... b LABEL-3 ... LABEL-1: uncommon-trap Please note that if the array size `LENGTH` is aligned with the vector size 256 (i.e. `LENGTH = 1024`), the branch "LABEL-2" will be optimized out by compiler and it becomes another uncommon-trap. For NEON, the main CFG is the same with above. But the compiler intrinsification is different. Here is the code: sub x10, x10, x12 ; limit - offset scvtf d16, x10 dup v16.2d, v16.d[0] ; replicateD mov x8, #0xd8d0 movk x8, #0x84cb, lsl #16 movk x8, #0xffff, lsl #32 ldr q17, [x8], #0 ; load the "iota" const vector fcmgt v18.2d, v16.2d, v17.2d ; mask = iota < limit - offset Here is the performance data of the new added benchmark on an ARM SVE 256-bit platform: Benchmark (size) Before After Units IndexInRangeBenchmark.byteIndexInRange 1024 11203.697 41404.431 ops/ms IndexInRangeBenchmark.byteIndexInRange 1027 2365.920 8747.004 ops/ms IndexInRangeBenchmark.doubleIndexInRange 1024 1227.505 6092.194 ops/ms IndexInRangeBenchmark.doubleIndexInRange 1027 351.215 1156.683 ops/ms IndexInRangeBenchmark.floatIndexInRange 1024 1468.876 11032.580 ops/ms IndexInRangeBenchmark.floatIndexInRange 1027 699.645 2439.671 ops/ms IndexInRangeBenchmark.intIndexInRange 1024 2842.187 11903.544 ops/ms IndexInRangeBenchmark.intIndexInRange 1027 689.866 2547.424 ops/ms IndexInRangeBenchmark.longIndexInRange 1024 1394.135 5902.973 ops/ms IndexInRangeBenchmark.longIndexInRange 1027 355.621 1189.458 ops/ms IndexInRangeBenchmark.shortIndexInRange 1024 5521.468 21578.340 ops/ms IndexInRangeBenchmark.shortIndexInRange 1027 1264.816 4640.504 ops/ms And the performance data with ARM NEON: Benchmark (size) Before After Units IndexInRangeBenchmark.byteIndexInRange 1024 4026.548 15562.880 ops/ms IndexInRangeBenchmark.byteIndexInRange 1027 305.314 576.559 ops/ms IndexInRangeBenchmark.doubleIndexInRange 1024 289.224 2244.080 ops/ms IndexInRangeBenchmark.doubleIndexInRange 1027 39.740 76.499 ops/ms IndexInRangeBenchmark.floatIndexInRange 1024 675.264 4457.470 ops/ms IndexInRangeBenchmark.floatIndexInRange 1027 79.918 144.952 ops/ms IndexInRangeBenchmark.intIndexInRange 1024 740.139 4014.583 ops/ms IndexInRangeBenchmark.intIndexInRange 1027 78.608 147.903 ops/ms IndexInRangeBenchmark.longIndexInRange 1024 400.683 2209.551 ops/ms IndexInRangeBenchmark.longIndexInRange 1027 41.146 69.599 ops/ms IndexInRangeBenchmark.shortIndexInRange 1024 1821.736 8153.546 ops/ms IndexInRangeBenchmark.shortIndexInRange 1027 158.810 243.205 ops/ms The performance improves about `3.5x ~ 7.5x` on the vector size aligned (1024 size) benchmarks both with NEON and SVE. And it improves about `3.5x/1.8x` on the vector size not aligned (1027 size) benchmarks with SVE/NEON respectively. We can also observe the similar improvement on the x86 platforms. [1] https://developer.arm.com/documentation/ddi0596/2020-12/SVE-Instructions/WHILELO--While-incrementing-unsigned-scalar-lower-than-scalar- ------------- Commit messages: - 8293198: [vectorapi] Improve the implementation of VectorMask.indexInRange() Changes: https://git.openjdk.org/jdk/pull/12064/files Webrev: https://webrevs.openjdk.org/?repo=jdk&pr=12064&range=00 Issue: https://bugs.openjdk.org/browse/JDK-8293198 Stats: 665 lines in 41 files changed: 622 ins; 0 del; 43 mod Patch: https://git.openjdk.org/jdk/pull/12064.diff Fetch: git fetch https://git.openjdk.org/jdk pull/12064/head:pull/12064 PR: https://git.openjdk.org/jdk/pull/12064