On Tue, 25 Oct 2022 10:37:40 GMT, Claes Redestad <redes...@openjdk.org> wrote:
> Continuing the work initiated by @luhenry to unroll and then intrinsify > polynomial hash loops. > > I've rewired the library changes to route via a single `@IntrinsicCandidate` > method. To make this work I've harmonized how they are invoked so that > there's less special handling and checks in the intrinsic. Mainly do the > null-check outside of the intrinsic for `Arrays.hashCode` cases. > > Having a centralized entry point means it'll be easier to parameterize the > factor and start values which are now hard-coded (always 31, and a start > value of either one for `Arrays` or zero for `String`). It seems somewhat > premature to parameterize this up front. > > The current implementation is performance neutral on microbenchmarks on all > tested platforms (x64, aarch64) when not enabling the intrinsic. We do add a > few trivial method calls which increase the call stack depth, so surprises > cannot be ruled out on complex workloads. > > With the most recent fixes the x64 intrinsic results on my workstation look > like this: > > Benchmark (size) Mode Cnt Score Error > Units > StringHashCode.Algorithm.defaultLatin1 1 avgt 5 2.199 ± 0.017 > ns/op > StringHashCode.Algorithm.defaultLatin1 10 avgt 5 6.933 ± 0.049 > ns/op > StringHashCode.Algorithm.defaultLatin1 100 avgt 5 29.935 ± 0.221 > ns/op > StringHashCode.Algorithm.defaultLatin1 10000 avgt 5 1596.982 ± 7.020 > ns/op > > Baseline: > > Benchmark (size) Mode Cnt Score Error > Units > StringHashCode.Algorithm.defaultLatin1 1 avgt 5 2.200 ± 0.013 > ns/op > StringHashCode.Algorithm.defaultLatin1 10 avgt 5 9.424 ± 0.122 > ns/op > StringHashCode.Algorithm.defaultLatin1 100 avgt 5 90.541 ± 0.512 > ns/op > StringHashCode.Algorithm.defaultLatin1 10000 avgt 5 9425.321 ± 67.630 > ns/op > > I.e. no measurable overhead compared to baseline even for `size == 1`. > > The vectorized code now nominally works for all unsigned cases as well as > ints, though more testing would be good. > > Benchmark for `Arrays.hashCode`: > > Benchmark (size) Mode Cnt Score Error Units > ArraysHashCode.bytes 1 avgt 5 1.884 ± 0.013 ns/op > ArraysHashCode.bytes 10 avgt 5 6.955 ± 0.040 ns/op > ArraysHashCode.bytes 100 avgt 5 87.218 ± 0.595 ns/op > ArraysHashCode.bytes 10000 avgt 5 9419.591 ± 38.308 ns/op > ArraysHashCode.chars 1 avgt 5 2.200 ± 0.010 ns/op > ArraysHashCode.chars 10 avgt 5 6.935 ± 0.034 ns/op > ArraysHashCode.chars 100 avgt 5 30.216 ± 0.134 ns/op > ArraysHashCode.chars 10000 avgt 5 1601.629 ± 6.418 ns/op > ArraysHashCode.ints 1 avgt 5 2.200 ± 0.007 ns/op > ArraysHashCode.ints 10 avgt 5 6.936 ± 0.034 ns/op > ArraysHashCode.ints 100 avgt 5 29.412 ± 0.268 ns/op > ArraysHashCode.ints 10000 avgt 5 1610.578 ± 7.785 ns/op > ArraysHashCode.shorts 1 avgt 5 1.885 ± 0.012 ns/op > ArraysHashCode.shorts 10 avgt 5 6.961 ± 0.034 ns/op > ArraysHashCode.shorts 100 avgt 5 87.095 ± 0.417 ns/op > ArraysHashCode.shorts 10000 avgt 5 9420.617 ± 50.089 ns/op > > Baseline: > > Benchmark (size) Mode Cnt Score Error Units > ArraysHashCode.bytes 1 avgt 5 3.213 ± 0.207 ns/op > ArraysHashCode.bytes 10 avgt 5 8.483 ± 0.040 ns/op > ArraysHashCode.bytes 100 avgt 5 90.315 ± 0.655 ns/op > ArraysHashCode.bytes 10000 avgt 5 9422.094 ± 62.402 ns/op > ArraysHashCode.chars 1 avgt 5 3.040 ± 0.066 ns/op > ArraysHashCode.chars 10 avgt 5 8.497 ± 0.074 ns/op > ArraysHashCode.chars 100 avgt 5 90.074 ± 0.387 ns/op > ArraysHashCode.chars 10000 avgt 5 9420.474 ± 41.619 ns/op > ArraysHashCode.ints 1 avgt 5 2.827 ± 0.019 ns/op > ArraysHashCode.ints 10 avgt 5 7.727 ± 0.043 ns/op > ArraysHashCode.ints 100 avgt 5 89.405 ± 0.593 ns/op > ArraysHashCode.ints 10000 avgt 5 9426.539 ± 51.308 ns/op > ArraysHashCode.shorts 1 avgt 5 3.071 ± 0.062 ns/op > ArraysHashCode.shorts 10 avgt 5 8.168 ± 0.049 ns/op > ArraysHashCode.shorts 100 avgt 5 90.399 ± 0.292 ns/op > ArraysHashCode.shorts 10000 avgt 5 9420.171 ± 44.474 ns/op > > > As we can see the `Arrays` intrinsics are faster for small inputs, and faster > on large inputs for `char` and `int` (the ones currently vectorized). I aim > to fix `byte` and `short` cases before integrating, though it might be > acceptable to hand that off as follow-up enhancements to not further delay > integration of this enhancement. I am planning to submit that patch after finishing with the current under-reviewed PRs. That patch was stalled because there was no node for vectorised unsigned cast and constant values. The first one has been added and the second one may be worked around as in the PR. I also thought of using masked loads for tail processing instead of falling back to scalar implementation. ------------- PR: https://git.openjdk.org/jdk/pull/10847