Dear Colleagues, I am trying to repeat a series termination effect calculation displayed as figure 2 in a publihsed paper (http://www.ncbi.nlm.nih.gov/pubmed/12215645). Formula (1) was used to implement this calculation. Since f(s) is not defined in detail in this paper, I used formula and parameters listed in another paper (http://scripts.iucr.org/cgi-bin/paper?a05896) to calculate it.
However, the result I got is not consistent with figure 2 of the first paper. I am not sure if the formulas I used are right or not. Or if there is any problem in the MatLab code, which I list below: ########### clear all;clc;format compact;format long; % matrix of a, b, c coefficients: % rows: Fe, S, Fe1, Mo % columns: A1; B1; A2; B2; A3; B3; A4; B4; C fM = ... [11.9185 4.87394 7.04848 0.34023 3.34326 15.9330 2.27228 79.0339 1.40818;... 7.18742 1.43280 5.88671 0.02865 5.15858 22.1101 1.64403 55.4651 -3.87732;... 11.9185 4.87394 7.04848 0.34023 3.34326 15.9330 2.27228 79.0339 1.40818;... 19.3885 0.97877 11.8308 10.0885 3.75919 31.9738 1.46772 117.932 5.55047]; %%% store radius data: % distance from: origin % columns: Fe, S, Fe, Mo R_el = [2.0 3.3 3.5 3.5]; RHO_t = zeros(4,400); for numel = 1:4 EL = numel; RHO = zeros(1,400); dmax = zeros(1,400); for iter = 1:400 dmax(iter) = iter/100; % in angstroms % numerical integration int_fun = @(s) 4*pi*(s.^2).* ... (fM(EL,1).*exp(-fM(EL,2).*(s.^2)*0.25) + ... fM(EL,3).*exp(-fM(EL,4).*(s.^2)*0.25) + ... fM(EL,5).*exp(-fM(EL,6).*(s.^2)*0.25) + ... fM(EL,7).*exp(-fM(EL,8).*(s.^2)*0.25) + fM(EL,9)).* ... sin(2*pi*s*R_el(EL))./(2*pi*s*R_el(EL)); RHO(iter) = quad(int_fun,0,1/dmax(iter)); clc;display(iter);display(numel); end RHO_t(numel,:) = RHO; end RHO_t(1,:)= 6*RHO_t(1,:); RHO_t(2,:)= 9*RHO_t(2,:); figure; axis([0.5 3.5 -10 10]); hold on; plot(dmax,RHO_t(1,:),... dmax,RHO_t(2,:),... dmax,RHO_t(3,:),... dmax,RHO_t(4,:),... dmax,sum(RHO_t,1)); title('Electron Density Profile'); legend('Fe','S','Fe1','Mo','Sum'); xlabel('d_m_a_x'); ylabel('Rho(r)'); set(gca,'XDir','reverse'); ############## Any suggestions will be appreciated. Thanks! Niu