New question #705076 on Yade: https://answers.launchpad.net/yade/+question/705076
Hello everybody when I run this triaxial test code In the case where setCohesionNow=True I get this error terminate called after throwing an instance of 'std::runtime_error' what(): Undefined or ambiguous IPhys dispatch for types FrictMat and CohFrictMat.(core dump) Please guide me. from yade import pack ############################################ ### DEFINING VARIABLES AND MATERIALS ### ############################################ # The following 5 lines will be used later for batch execution nRead=readParamsFromTable( num_spheres=1000,# number of spheres compFricDegree = 30, # contact friction during the confining phase key='_triax_base_', # put you simulation's name here unknownOk=True ) from yade.params import table num_spheres=table.num_spheres# number of spheres key=table.key targetPorosity = 0.34#the porosity we want for the packing compFricDegree = table.compFricDegree # initial contact friction during the confining phase (will be decreased during the REFD compaction process) finalFricDegree = 30 # contact friction during the deviatoric loading rate=-0.02 # loading rate (strain rate) damp=0.2 # damping coefficient stabilityThreshold=0.01 # we test unbalancedForce against this value in different loops (see below) young=5e6 # contact stiffness mn,mx=Vector3(0,0,0),Vector3(.8,.8,.8) # corners of the initial packing ## create materials for spheres and trash O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=radians(compFricDegree),density=2600,label='spheres')) O.materials.append(CohFrictMat(young=1e6,poisson=0.1,density=1400,label='trash',frictionAngle=radians(compFricDegree), isCohesive=True, normalCohesion=50000000, shearCohesion=50000000, )) O.materials.append(FrictMat(young=young,poisson=0.5,frictionAngle=0,density=0,label='walls')) ## create walls around the packing walls=aabbWalls([mn,mx],thickness=0,material='walls') wallIds=O.bodies.append(walls) ## use a SpherePack object to generate a random loose particles packing sp=pack.SpherePack() spSmall = pack.SpherePack() spBig = pack.SpherePack() sp.makeCloud((0,0,0),(.8,.8,.8),psdSizes=[.01,.0105,.011,.078,.08,.081],psdCumm=[0,.97,.9868,.987,.99,1],distributeMass=False,seed=1) for ss in sp: #split SpherePack into two other packs based on the particle size r = ss[1] if r > .05/2:# please note that you feed diameters nor radii in psdSizes, that is why I divide it by 2 spBig.add(ss[0],ss[1]) else: spSmall.add(ss[0],ss[1]) # add only the spheres that you want to replace and replace them with clump1 spSmall.toSimulation(material='spheres') ct1 = clumpTemplate([1,1],[[0,0,0],[0,0,1]]) O.bodies.replaceByClumps( [ct1] , [1], discretization = 20 ) for b in O.bodies: if b.isClumpMember: b.shape.color=(1,1,1) ####product trash##### a=[0,.005,.01,.015,.02,.025,.03,.035] b=[0,.005,.01,.015,.02,.025,.03,.035,.04,.045,.05,.055,.06,.065,.07,.075] c=[.005] d=[] e=[.005] g=e*128 for i in a: for j in b: for k in c: d.append((i,j,k)) #add the remaining spheres stored in the other sphere pack spBig.toSimulation(material='trash') ct2 = clumpTemplate(g,d) aa=O.bodies.replaceByClumps( [ct2] , [1], discretization = 20 ) for ii in aa: xx=ii[1] for jj in xx: O.bodies[jj].shape.color=(1,1,0) #O.dt = 0 #O.step() #for i in O.interactions: #i.phys.unp = i.geom.penetrationDepth ############################# ### DEFINING ENGINES ### ############################ triax=TriaxialStressController( ## TriaxialStressController will be used to control stress and strain. It controls particles size and plates positions. ## this control of boundary conditions was used for instance in http://dx.doi.org/10.1016/j.ijengsci.2008.07.002 maxMultiplier=1.+2e4/young, # spheres growing factor (fast growth) finalMaxMultiplier=1.+2e3/young, # spheres growing factor (slow growth) thickness = 0, ## switch stress/strain control using a bitmask. What is a bitmask, huh?! ## Say x=1 if stess is controlled on x, else x=0. Same for for y and z, which are 1 or 0. ## Then an integer uniquely defining the combination of all these tests is: mask = x*1 + y*2 + z*4 ## to put it differently, the mask is the integer whose binary representation is xyz, i.e. ## "100" (1) means "x", "110" (3) means "x and y", "111" (7) means "x and y and z", etc. stressMask = 7, internalCompaction=False, # If true the confining pressure is generated by growing particles ) newton=NewtonIntegrator(damping=damp) O.engines=[ ForceResetter(), InsertionSortCollider([Bo1_Sphere_Aabb(),Bo1_Box_Aabb()]), InteractionLoop( [Ig2_Sphere_Sphere_ScGeom(),Ig2_Box_Sphere_ScGeom()], [Ip2_CohFrictMat_CohFrictMat_CohFrictPhys( setCohesionNow=True, setCohesionOnNewContacts=False, )], [Law2_ScGeom6D_CohFrictPhys_CohesionMoment(),Law2_ScGeom_FrictPhys_CundallStrack()] ), ## We will use the global stiffness of each body to determine an optimal timestep (see https://yade-dem.org/w/images/1/1b/Chareyre&Villard2005_licensed.pdf) GlobalStiffnessTimeStepper(active=1,timeStepUpdateInterval=100,timestepSafetyCoefficient=0.8), triax, TriaxialStateRecorder(iterPeriod=100,file='WallStresses'+table.key), newton ] #Display spheres with 2 colors for seeing rotations better Gl1_Sphere.stripes=0 if nRead==0: yade.qt.Controller(), yade.qt.View() ####################################### ### APPLYING CONFINING PRESSURE ### ####################################### #the value of (isotropic) confining stress defines the target stress to be applied in all three directions triax.goal1=triax.goal2=triax.goal3=-10000 while 1: print(O.iter) O.run(1000, True) ##the global unbalanced force on dynamic bodies, thus excluding boundaries, which are not at equilibrium unb=unbalancedForce() print ('unbalanced force:',unb,' mean stress: ',triax.meanStress) if unb<stabilityThreshold and abs(-10000-triax.meanStress)/10000<0.001: break O.save('confinedState'+key+'.yade.gz') #print ("### Isotropic state saved ###") ################################################### ### REACHING A SPECIFIED POROSITY PRECISELY ### ################################################### ### We will reach a prescribed value of porosity with the REFD algorithm ### (see http://dx.doi.org/10.2516/ogst/2012032 and ### http://www.geosyntheticssociety.org/Resources/Archive/GI/src/V9I2/GI-V9-N2-Paper1.pdf) import sys #this is only for the flush() below while triax.porosity>targetPorosity: ## we decrease friction value and apply it to all the bodies and contacts compFricDegree = 0.95*compFricDegree setContactFriction(radians(compFricDegree)) print ("\r Friction: ",compFricDegree," porosity:",triax.porosity) sys.stdout.flush() ## while we run steps, triax will tend to grow particles as the packing ## keeps shrinking as a consequence of decreasing friction. Consequently ## porosity will decrease O.run(500,1) O.save('compactedState'+key+'.yade.gz') #print "### Compacted state saved ###" O.pause() print('print') ############################## ### DEVIATORIC LOADING ### ############################## ##We move to deviatoric loading, let us turn internal compaction off to keep particles sizes constant triax.internalCompaction=False ## Change contact friction (remember that decreasing it would generate instantaneous instabilities) setContactFriction(radians(finalFricDegree)) ##set stress control on x and z, we will impose strain rate on y triax.stressMask = 5 ##now goal2 is the target strain rate triax.goal2=rate ## we define the lateral stresses during the test, here the same 10kPa as for the initial confinement. triax.goal1=-10000 triax.goal3=-10000 ##we can change damping here. What is the effect in your opinion? newton.damping=0.1 ##Save temporary state in live memory. This state will be reloaded from the interface with the "reload" button. O.saveTmp() ##################################################### ### Example of how to record and plot data ### ##################################################### from yade import plot ### a function saving variables def history(): plot.addData(e11=-triax.strain[0], e22=-triax.strain[1], e33=-triax.strain[2], ev=-triax.strain[0]-triax.strain[1]-triax.strain[2], s11=-triax.stress(triax.wall_right_id)[0], s22=-triax.stress(triax.wall_top_id)[1], s33=-triax.stress(triax.wall_front_id)[2], i=O.iter) if 1: ## include a periodic engine calling that function in the simulation loop O.engines=O.engines[0:5]+[PyRunner(iterPeriod=20,command='history()',label='recorder')]+O.engines[5:7] ##O.engines.insert(4,PyRunner(iterPeriod=20,command='history()',label='recorder')) else: ## With the line above, we are recording some variables twice. We could in fact replace the previous ## TriaxialRecorder ## by our periodic engine. Uncomment the following line: O.engines[4]=PyRunner(iterPeriod=20,command='history()',label='recorder') O.run(100000,True) ### declare what is to plot. "None" is for separating y and y2 axis plot.plots={'i':('e11','e22','e33',None,'s11','s22','s33')} ### the traditional triaxial curves would be more like this: ##plot.plots={'e22':('s11','s22','s33',None,'ev')} ## display on the screen (doesn't work on VMware image it seems) plot.plot() ##### PLAY THE SIMULATION HERE WITH "PLAY" BUTTON OR WITH THE COMMAND O.run(N) ##### ## In that case we can still save the data to a text file at the the end of the simulation, with: plot.saveDataTxt('results'+key) ##or even generate a script for gnuplot. Open another terminal and type "gnuplot plotScriptKEY.gnuplot: plot.saveGnuplot('plotScript'+key) -- You received this question notification because your team yade-users is an answer contact for Yade. _______________________________________________ Mailing list: https://launchpad.net/~yade-users Post to : yade-users@lists.launchpad.net Unsubscribe : https://launchpad.net/~yade-users More help : https://help.launchpad.net/ListHelp