I've included a version of xtypes.py that will tell us the value of "direction" when an exception occurs. Could you substitute it for your copy?
On Tue, Dec 24, 2024 at 12:31 AM Auchtermuchty Weather <shunrac...@gmail.com> wrote: > OK ran some SQL and captured the output: > > WindDir.csv:|null|9 > WindDir.csv:|text|428413 > WindGust.csv:|text|2021 > WindGustDir.csv:|null|6 > WindGustDir.csv:|text|371698 > > However when I looked at the timestamps for the few rows with NULL, they > were all in December this year, and from well after the problem started. > > I've had a look at the data - no over or under values in my view: > > sqlite> select min(windGustDir), max(windGustDir) from archive where > windGustDir <> "" ; > 0.0|359.0 > sqlite> select min(windDir), max(windDir) from archive where windDir <> > "" ; > 0.0|360.0 > > So nothing strange there either. > > On Tuesday, 24 December 2024 at 07:53:58 UTC Auchtermuchty Weather wrote: > >> SQLite. I was wondering that, but as "0" <> 0, selecting windGust, >> count(*) should bring back separate rows for each. >> >> On Monday, 23 December 2024 at 22:49:54 UTC Tom Keffer wrote: >> >>> I would guess that one of the fields in your database that you think >>> holds a number, actually holds a string. It could be a string for value >>> zero ('0'), instead of the actual value zero (0). >>> >>> The error occurred on a line that is doing queries in the main archive >>> table (not the daily summaries) using columns 'windDir' or 'windGustDir'. >>> >>> One more thing: what kind of database? Sqlite? >>> >>> >>> >>> On Mon, Dec 23, 2024 at 10:55 AM Auchtermuchty Weather < >>> shunr...@gmail.com> wrote: >>> >>>> Sorry truncated the error report. I used cut to remove the stuff at the >>>> start of each line and put the output into a file, then used 'set number' >>>> in my text editor to make sure I pasted all the lines., >>>> >>>> 1 Caught unrecoverable exception in generator >>>> 'weewx.imagegenerator.ImageGenerator' >>>> 2 **** unsupported operand type(s) for -: 'float' and >>>> 'str' >>>> 3 **** Traceback (most recent call last): >>>> 4 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 109, in get_series >>>> 5 **** return xtype.get_series(obs_type, timespan, >>>> db_manager, aggregate_type, >>>> 6 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 7 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 1040, in get_series >>>> 8 **** return ArchiveTable.get_series(obs_type, >>>> timespan, db_manager, aggregate_type, >>>> 9 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 10 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 210, in get_series >>>> 11 **** agg_vt = get_aggregate(obs_type, stamp, >>>> do_aggregate, db_manager, >>>> 12 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 13 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 136, in get_aggregate >>>> 14 **** return xtype.get_aggregate(obs_type, >>>> timespan, aggregate_type, db_manager, >>>> 15 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 16 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 1168, in get_aggregate >>>> 17 **** xsum += mag * math.cos(math.radians(90.0 - >>>> direction)) >>>> 18 **** >>>> ~~~~~^~~~~~~~~~~ >>>> 19 **** TypeError: unsupported operand type(s) for -: >>>> 'float' and 'str' >>>> 20 **** >>>> 21 **** During handling of the above exception, another >>>> exception occurred: >>>> 22 **** >>>> 23 **** Traceback (most recent call last): >>>> 24 **** File "/usr/share/weewx/weewx/reportengine.py", >>>> line 248, in run >>>> 25 **** obj.start() >>>> 26 **** File "/usr/share/weewx/weewx/reportengine.py", >>>> line 465, in start >>>> 27 **** self.run() >>>> 28 **** File >>>> "/usr/share/weewx/weewx/imagegenerator.py", line 37, in run >>>> 29 **** self.gen_images(self.gen_ts) >>>> 30 **** File >>>> "/usr/share/weewx/weewx/imagegenerator.py", line 100, in gen_images >>>> 31 **** plot = self.gen_plot(plotgen_ts, >>>> 32 **** ^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 33 **** File >>>> "/usr/share/weewx/weewx/imagegenerator.py", line 236, in gen_plot >>>> 34 **** start_vec_t, stop_vec_t, data_vec_t = >>>> weewx.xtypes.get_series( >>>> 35 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 36 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 114, in get_series >>>> 37 **** return xtype.get_series(obs_type, timespan, >>>> db_manager, aggregate_type, >>>> 38 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 39 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 1040, in get_series >>>> 40 **** return ArchiveTable.get_series(obs_type, >>>> timespan, db_manager, aggregate_type, >>>> 41 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 42 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 210, in get_series >>>> 43 **** agg_vt = get_aggregate(obs_type, stamp, >>>> do_aggregate, db_manager, >>>> 44 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 45 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 136, in get_aggregate >>>> 46 **** return xtype.get_aggregate(obs_type, >>>> timespan, aggregate_type, db_manager, >>>> 47 **** >>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>> 48 **** File "/usr/share/weewx/weewx/xtypes.py", line >>>> 1168, in get_aggregate >>>> 49 **** xsum += mag * math.cos(math.radians(90.0 - >>>> direction)) >>>> 50 **** >>>> ~~~~~^~~~~~~~~~~ >>>> 51 **** TypeError: unsupported operand type(s) for -: >>>> 'float' and 'str' >>>> 52 **** Generator terminated >>>> 53 rand type(s) for -: 'float' and 'str' >>>> 54 rand type(s) for -: 'float' and 'str' >>>> >>>> On Monday, 23 December 2024 at 18:53:18 UTC Auchtermuchty Weather wrote: >>>> >>>>> I was getting errors. Process of elimination showed it was the >>>>> monthwindvec image causing them, though not the day, week or year versions >>>>> of that images. >>>>> >>>>> I suspect data is at the bottom of this, but what data? Nothing odd in >>>>> archive.windGust or windGustDir. >>>>> >>>>> This is the latest WeeWx running on a Debian 12 virtual machine, and >>>>> the database has the extended schema. >>>>> >>>>> Turning on debugging didn't bring any extra information. >>>>> >>>>> Caught unrecoverable exception in generator >>>>> 'weewx.imagegenerator.ImageGenerator' >>>>> **** unsupported operand type(s) for -: 'float' and 'str' >>>>> **** Traceback (most recent call last): >>>>> **** File "/usr/share/weewx/weewx/xtypes.py", line 109, in >>>>> get_series >>>>> **** return xtype.get_series(obs_type, timespan, >>>>> db_manager, aggregate_type, >>>>> **** >>>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>>> **** File "/usr/share/weewx/weewx/xtypes.py", line 1040, in >>>>> get_series >>>>> **** return ArchiveTable.get_series(obs_type, timespan, >>>>> db_manager, aggregate_type, >>>>> **** >>>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>>> **** File "/usr/share/weewx/weewx/xtypes.py", line 210, in >>>>> get_series >>>>> **** agg_vt = get_aggregate(obs_type, stamp, >>>>> do_aggregate, db_manager, >>>>> **** >>>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>>> **** File "/usr/share/weewx/weewx/xtypes.py", line 136, in >>>>> get_aggregate >>>>> **** return xtype.get_aggregate(obs_type, timespan, >>>>> aggregate_type, db_manager, >>>>> **** >>>>> ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ >>>>> **** File "/usr/share/weewx/weewx/xtypes.py", line 1168, in >>>>> get_aggregate >>>>> **** xsum += mag * math.cos(math.radians(90.0 - >>>>> direction)) >>>>> **** ~~~~~^~~~~~~~~~~ >>>>> **** TypeError: unsupported operand type(s) for -: 'float' >>>>> and 'str' >>>>> **** >>>>> **** During handling of the above exception, another >>>>> exception occurred: >>>>> **** >>>>> **** Traceback (most recent call last): >>>>> **** File "/usr/share/weewx/weewx/reportengine.py", line >>>>> 248, in run >>>>> **** obj.start() >>>>> **** File "/usr/share/weewx/weewx/reportengine.py", line >>>>> 465, in start >>>>> >>>> -- >>>> You received this message because you are subscribed to the Google >>>> Groups "weewx-user" group. >>>> To unsubscribe from this group and stop receiving emails from it, send >>>> an email to weewx-user+...@googlegroups.com. >>>> To view this discussion visit >>>> https://groups.google.com/d/msgid/weewx-user/e8d2f679-c9e7-46a2-9588-652cf0852a90n%40googlegroups.com >>>> <https://groups.google.com/d/msgid/weewx-user/e8d2f679-c9e7-46a2-9588-652cf0852a90n%40googlegroups.com?utm_medium=email&utm_source=footer> >>>> . >>>> >>> -- > You received this message because you are subscribed to the Google Groups > "weewx-user" group. > To unsubscribe from this group and stop receiving emails from it, send an > email to weewx-user+unsubscr...@googlegroups.com. > To view this discussion visit > https://groups.google.com/d/msgid/weewx-user/456aeb45-2d77-4136-bea2-22b0ecfb2004n%40googlegroups.com > <https://groups.google.com/d/msgid/weewx-user/456aeb45-2d77-4136-bea2-22b0ecfb2004n%40googlegroups.com?utm_medium=email&utm_source=footer> > . > -- You received this message because you are subscribed to the Google Groups "weewx-user" group. To unsubscribe from this group and stop receiving emails from it, send an email to weewx-user+unsubscr...@googlegroups.com. To view this discussion visit https://groups.google.com/d/msgid/weewx-user/CAPq0zEABDZY0-6wCSc0ueHudX6A8muuBMwrv%2BdPs22Vg7OhA%2Bw%40mail.gmail.com.
# # Copyright (c) 2019-2024 Tom Keffer <tkef...@gmail.com> # # See the file LICENSE.txt for your full rights. # """User-defined extensions to the WeeWX type system""" import datetime import time import math import weedb import weeutil.weeutil import weewx import weewx.units import weewx.wxformulas from weeutil.weeutil import isStartOfDay, to_float from weewx.units import ValueTuple # A list holding the type extensions. Each entry should be a subclass of XType, defined below. xtypes = [] class XType: """Base class for extensions to the WeeWX type system.""" def get_scalar(self, obs_type, record, db_manager=None, **option_dict): """Calculate a scalar. Args: obs_type (str): The name of the XType record (dict): The current record. db_manager(weewx.manager.Manager|None): An open database manager option_dict(dict): A dictionary containing optional values Returns: ValueTuple: The value of the xtype as a ValueTuple Raises: weewx.UnknownType: If the type `obs_type` is unknown to the function. weewx.CannotCalculate: If the type is known to the function, but all the information necessary to calculate the type is not there. """ raise weewx.UnknownType def get_series(self, obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): """Calculate a series, possibly with aggregation. Specializing versions should raise... - an exception of type `weewx.UnknownType`, if the type `obs_type` is unknown to the function. - an exception of type `weewx.CannotCalculate` if the type is known to the function, but all the information necessary to calculate the series is not there. """ raise weewx.UnknownType def get_aggregate(self, obs_type, timespan, aggregate_type, db_manager, **option_dict): """Calculate an aggregation. Specializing versions should raise... - an exception of type `weewx.UnknownType`, if the type `obs_type` is unknown to the function. - an exception of type `weewx.UnknownAggregation` if the aggregation type `aggregate_type` is unknown to the function. - an exception of type `weewx.CannotCalculate` if the type is known to the function, but all the information necessary to calculate the type is not there. """ raise weewx.UnknownAggregation def shut_down(self): """Opportunity to do any clean up.""" pass # ##################### Retrieval functions ########################### def get_scalar(obs_type, record, db_manager=None, **option_dict): """Return a scalar value""" # Search the list, looking for a get_scalar() method that does not raise an UnknownType # exception for xtype in xtypes: try: # Try this function. Be prepared to catch the TypeError exception if it is a legacy # style XType that does not accept kwargs. try: return xtype.get_scalar(obs_type, record, db_manager, **option_dict) except TypeError: # We likely have a legacy style XType, so try calling it again, but this time # without the kwargs. return xtype.get_scalar(obs_type, record, db_manager) except weewx.UnknownType: # This function does not know about the type. Move on to the next one. pass # None of the functions worked. raise weewx.UnknownType(obs_type) def get_series(obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): """Return a series (aka vector) of, possibly aggregated, values.""" # Search the list, looking for a get_series() method that does not raise an UnknownType or # UnknownAggregation exception for xtype in xtypes: try: # Try this function. Be prepared to catch the TypeError exception if it is a legacy # style XType that does not accept kwargs. try: return xtype.get_series(obs_type, timespan, db_manager, aggregate_type, aggregate_interval, **option_dict) except TypeError: # We likely have a legacy style XType, so try calling it again, but this time # without the kwargs. return xtype.get_series(obs_type, timespan, db_manager, aggregate_type, aggregate_interval) except (weewx.UnknownType, weewx.UnknownAggregation): # This function does not know about the type and/or aggregation. # Move on to the next one. pass # None of the functions worked. Raise an exception with a hopefully helpful error message. if aggregate_type: msg = "'%s' or '%s'" % (obs_type, aggregate_type) else: msg = obs_type raise weewx.UnknownType(msg) def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Calculate an aggregation over a timespan""" # Search the list, looking for a get_aggregate() method that does not raise an # UnknownAggregation exception for xtype in xtypes: try: # Try this function. It will raise an exception if it doesn't know about the type of # aggregation. return xtype.get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict) except (weewx.UnknownType, weewx.UnknownAggregation): pass raise weewx.UnknownAggregation("%s('%s')" % (aggregate_type, obs_type)) def has_data(obs_type, timespan, db_manager): """Search the list, looking for a version that has data. Args: obs_type(str): The name of a potential xtype timespan(tuple[float, float])|TimeSpan: A two-way tuple (start time, stop time) db_manager(weewx.manager.Manager|None): An open database manager Returns: bool: True if there is non-null xtype data in the timespan. False otherwise. """ for xtype in xtypes: try: # Try this function. It will raise an exception if it doesn't know about the type of # aggregation. vt = xtype.get_aggregate(obs_type, timespan, 'not_null', db_manager) # Check to see if we found a non-null value. Otherwise, keep going. return bool(vt[0]) except (weewx.UnknownType, weewx.UnknownAggregation): pass except weewx.CannotCalculate: # Function get_aggregate() should not raise CannotCalculate. # But, catch it just in case. return False # Tried all the get_aggregates() and didn't find a non-null value. Either it doesn't exist, # or doesn't have any data return False # # ######################## Class ArchiveTable ############################## # class ArchiveTable(XType): """Calculate types and aggregates directly from the archive table""" @staticmethod def get_series(obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): """Get a series, possibly with aggregation, from the main archive database. The general strategy is that if aggregation is asked for, chop the series up into separate chunks, calculating the aggregate for each chunk. Then assemble the results. If no aggregation is called for, just return the data directly out of the database. """ startstamp, stopstamp = timespan start_vec = list() stop_vec = list() data_vec = list() if aggregate_type: # Return a series with aggregation unit, unit_group = None, None if aggregate_type == 'cumulative': do_aggregate = 'sum' total = 0 else: do_aggregate = aggregate_type for stamp in weeutil.weeutil.intervalgen(startstamp, stopstamp, aggregate_interval): if db_manager.first_timestamp is None or stamp.stop <= db_manager.first_timestamp: continue if db_manager.last_timestamp is None or stamp.start >= db_manager.last_timestamp: break try: # Get the aggregate as a ValueTuple agg_vt = get_aggregate(obs_type, stamp, do_aggregate, db_manager, **option_dict) except weewx.CannotCalculate: # Function get_aggregate() should not raise CannotCalculate. But, just in case, # catch it and convert to None. agg_vt = ValueTuple(None, unit, unit_group) if unit: # Make sure units are consistent so far. if agg_vt[1] is not None and (unit != agg_vt[1] or unit_group != agg_vt[2]): raise weewx.UnsupportedFeature("Cannot change units within a series.") else: unit, unit_group = agg_vt[1], agg_vt[2] start_vec.append(stamp.start) stop_vec.append(stamp.stop) if aggregate_type == 'cumulative': if agg_vt[0] is not None: total += agg_vt[0] data_vec.append(total) else: data_vec.append(agg_vt[0]) else: # No aggregation sql_str = "SELECT dateTime, %s, usUnits, `interval` FROM %s " \ "WHERE dateTime > ? AND dateTime <= ?" % (obs_type, db_manager.table_name) std_unit_system = None # Hit the database. It's possible the type is not in the database, so be prepared # to catch a NoColumnError: try: for record in db_manager.genSql(sql_str, (startstamp, stopstamp)): # Unpack the record timestamp, value, unit_system, interval = record if std_unit_system: if std_unit_system != unit_system: raise weewx.UnsupportedFeature("Unit type cannot change " "within an aggregation interval.") else: std_unit_system = unit_system start_vec.append(timestamp - interval * 60) stop_vec.append(timestamp) data_vec.append(value) except weedb.NoColumnError: # The sql type doesn't exist. Convert to an UnknownType error raise weewx.UnknownType(obs_type) unit, unit_group = weewx.units.getStandardUnitType(std_unit_system, obs_type, aggregate_type) return (ValueTuple(start_vec, 'unix_epoch', 'group_time'), ValueTuple(stop_vec, 'unix_epoch', 'group_time'), ValueTuple(data_vec, unit, unit_group)) # Set of SQL statements to be used for calculating aggregates from the main archive table. agg_sql_dict = { 'diff': "SELECT (b.%(sql_type)s - a.%(sql_type)s) FROM archive a, archive b " "WHERE b.dateTime = (SELECT MAX(dateTime) FROM archive " "WHERE dateTime <= %(stop)s) " "AND a.dateTime = (SELECT MIN(dateTime) FROM archive " "WHERE dateTime >= %(start)s);", 'first': "SELECT %(sql_type)s FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL ORDER BY dateTime ASC LIMIT 1", 'firsttime': "SELECT MIN(dateTime) FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL", 'last': "SELECT %(sql_type)s FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL ORDER BY dateTime DESC LIMIT 1", 'lasttime': "SELECT MAX(dateTime) FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL", 'maxtime': "SELECT dateTime FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL ORDER BY %(sql_type)s DESC LIMIT 1", 'mintime': "SELECT dateTime FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL ORDER BY %(sql_type)s ASC LIMIT 1", 'not_null': "SELECT 1 FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(sql_type)s IS NOT NULL LIMIT 1", 'tderiv': "SELECT (b.%(sql_type)s - a.%(sql_type)s) / (b.dateTime-a.dateTime) " "FROM archive a, archive b " "WHERE b.dateTime = (SELECT MAX(dateTime) FROM archive " "WHERE dateTime <= %(stop)s) " "AND a.dateTime = (SELECT MIN(dateTime) FROM archive " "WHERE dateTime >= %(start)s);", 'gustdir': "SELECT windGustDir FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "ORDER BY windGust DESC limit 1", # Aggregations 'vecdir' and 'vecavg' require built-in math functions, # which were introduced in sqlite v3.35.0, 12-Mar-2021. If they don't exist, then # weewx will raise an exception of type "weedb.OperationalError". 'vecdir': "SELECT SUM(`interval` * windSpeed * COS(RADIANS(90 - windDir))), " " SUM(`interval` * windSpeed * SIN(RADIANS(90 - windDir))) " "FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s ", 'vecavg': "SELECT SUM(`interval` * windSpeed * COS(RADIANS(90 - windDir))), " " SUM(`interval` * windSpeed * SIN(RADIANS(90 - windDir))), " " SUM(`interval`) " "FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND windSpeed is not null" } valid_aggregate_types = set(['sum', 'count', 'avg', 'max', 'min']).union(agg_sql_dict.keys()) simple_agg_sql = "SELECT %(aggregate_type)s(%(sql_type)s) FROM %(table_name)s " \ "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " \ "AND %(sql_type)s IS NOT NULL" @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Returns an aggregation of an observation type over a given time period, using the main archive table. Args: obs_type (str): The type over which aggregation is to be done (e.g., 'barometer', 'outTemp', 'rain', ...) timespan (weeutil.weeutil.TimeSpan): An instance of weeutil.Timespan with the time period over which aggregation is to be done. aggregate_type (str): The type of aggregation to be done. db_manager (weewx.manager.Manager): An instance of weewx.manager.Manager or subclass. option_dict (dict): Not used in this version. Returns: ValueTuple: A ValueTuple containing the result. """ if aggregate_type not in ArchiveTable.valid_aggregate_types: raise weewx.UnknownAggregation(aggregate_type) # For older versions of sqlite, we need to do these calculations the hard way: if obs_type == 'wind' \ and aggregate_type in ('vecdir', 'vecavg') \ and not db_manager.connection.has_math: return ArchiveTable.get_wind_aggregate_long(obs_type, timespan, aggregate_type, db_manager) if obs_type == 'wind': sql_type = 'windGust' if aggregate_type in ('max', 'maxtime') else 'windSpeed' else: sql_type = obs_type interpolate_dict = { 'aggregate_type': aggregate_type, 'sql_type': sql_type, 'table_name': db_manager.table_name, 'start': timespan.start, 'stop': timespan.stop } select_stmt = ArchiveTable.agg_sql_dict.get(aggregate_type, ArchiveTable.simple_agg_sql) % interpolate_dict try: row = db_manager.getSql(select_stmt) except weedb.NoColumnError: raise weewx.UnknownType(aggregate_type) if aggregate_type == 'not_null': value = row is not None elif aggregate_type == 'vecdir': if None in row or row == (0.0, 0.0): value = None else: deg = 90.0 - math.degrees(math.atan2(row[1], row[0])) value = deg if deg >= 0 else deg + 360.0 elif aggregate_type == 'vecavg': value = math.sqrt((row[0] ** 2 + row[1] ** 2) / row[2] ** 2) if row[2] else None else: value = row[0] if row else None # Look up the unit type and group of this combination of observation type and aggregation: u, g = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) # Time derivatives have special rules. For example, the time derivative of watt-hours is # watts, scaled by the number of seconds in an hour. The unit group also changes to # group_power. if aggregate_type == 'tderiv': if u == 'watt_second': u = 'watt' elif u == 'watt_hour': u = 'watt' value *= 3600 elif u == 'kilowatt_hour': u = 'kilowatt' value *= 3600 g = 'group_power' # Form the ValueTuple and return it: return weewx.units.ValueTuple(value, u, g) @staticmethod def get_wind_aggregate_long(obs_type, timespan, aggregate_type, db_manager): """Calculate the math algorithm for vecdir and vecavg in Python. Suitable for versions of sqlite that do not have math functions.""" # This should never happen: if aggregate_type not in ['vecdir', 'vecavg']: raise weewx.UnknownAggregation(aggregate_type) # Nor this: if obs_type != 'wind': raise weewx.UnknownType(obs_type) sql_stmt = "SELECT `interval`, windSpeed, windDir " \ "FROM %(table_name)s " \ "WHERE dateTime > %(start)s AND dateTime <= %(stop)s;" \ % { 'table_name': db_manager.table_name, 'start': timespan.start, 'stop': timespan.stop } xsum = 0.0 ysum = 0.0 sumtime = 0.0 for row in db_manager.genSql(sql_stmt): if row[1] is not None: sumtime += row[0] if row[2] is not None: xsum += row[0] * row[1] * math.cos(math.radians(90.0 - row[2])) ysum += row[0] * row[1] * math.sin(math.radians(90.0 - row[2])) if not sumtime or (xsum == 0.0 and ysum == 0.0): value = None elif aggregate_type == 'vecdir': deg = 90.0 - math.degrees((math.atan2(ysum, xsum))) value = deg if deg >= 0 else deg + 360.0 else: assert aggregate_type == 'vecavg' value = math.sqrt((xsum ** 2 + ysum ** 2) / sumtime ** 2) # Look up the unit type and group of this combination of observation type and aggregation: u, g = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) # Form the ValueTuple and return it: return weewx.units.ValueTuple(value, u, g) # # ######################## Class DailySummaries ############################## # class DailySummaries(XType): """Calculate from the daily summaries.""" # Set of SQL statements to be used for calculating simple aggregates from the daily summaries. agg_sql_dict = { 'avg': "SELECT SUM(wsum),SUM(sumtime) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'avg_ge': "SELECT SUM((wsum/sumtime) >= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s and sumtime <> 0", 'avg_le': "SELECT SUM((wsum/sumtime) <= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s and sumtime <> 0", 'count': "SELECT SUM(count) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'gustdir': "SELECT max_dir FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "ORDER BY max DESC, maxtime ASC LIMIT 1", 'max': "SELECT MAX(max) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'max_ge': "SELECT SUM(max >= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'max_le': "SELECT SUM(max <= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'maxmin': "SELECT MAX(min) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'maxmintime': "SELECT mintime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "AND mintime IS NOT NULL " "ORDER BY min DESC, mintime ASC LIMIT 1", 'maxsum': "SELECT MAX(sum) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'maxsumtime': "SELECT dateTime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "ORDER BY sum DESC, dateTime ASC LIMIT 1", 'maxtime': "SELECT maxtime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "AND maxtime IS NOT NULL " "ORDER BY max DESC, maxtime ASC LIMIT 1", 'meanmax': "SELECT AVG(max) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'meanmin': "SELECT AVG(min) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'min': "SELECT MIN(min) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'min_ge': "SELECT SUM(min >= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'min_le': "SELECT SUM(min <= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'minmax': "SELECT MIN(max) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'minmaxtime': "SELECT maxtime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "AND maxtime IS NOT NULL " "ORDER BY max ASC, maxtime ASC ", 'minsum': "SELECT MIN(sum) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'minsumtime': "SELECT dateTime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "ORDER BY sum ASC, dateTime ASC LIMIT 1", 'mintime': "SELECT mintime FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s " "AND mintime IS NOT NULL " "ORDER BY min ASC, mintime ASC LIMIT 1", 'not_null': "SELECT count>0 as c FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s ORDER BY c DESC LIMIT 1", 'rms': "SELECT SUM(wsquaresum),SUM(sumtime) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'sum': "SELECT SUM(sum) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'sum_ge': "SELECT SUM(sum >= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'sum_le': "SELECT SUM(sum <= %(val)s) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'vecavg': "SELECT SUM(xsum),SUM(ysum),SUM(sumtime) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", 'vecdir': "SELECT SUM(xsum),SUM(ysum) FROM %(table_name)s_day_%(obs_key)s " "WHERE dateTime >= %(start)s AND dateTime < %(stop)s", } @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Returns an aggregation of a statistical type for a given time period, by using the daily summaries. obs_type: The type over which aggregation is to be done (e.g., 'barometer', 'outTemp', 'rain', ...) timespan: An instance of weeutil.Timespan with the time period over which aggregation is to be done. aggregate_type: The type of aggregation to be done. db_manager: An instance of weewx.manager.Manager or subclass. option_dict: Not used in this version. returns: A ValueTuple containing the result.""" # We cannot use the daily summaries if there is no aggregation if not aggregate_type: raise weewx.UnknownAggregation(aggregate_type) aggregate_type = aggregate_type.lower() # Raise exception if we don't know about this type of aggregation if aggregate_type not in DailySummaries.agg_sql_dict: raise weewx.UnknownAggregation(aggregate_type) # Check to see whether we can use the daily summaries: DailySummaries.check_eligibility(obs_type, timespan, db_manager, aggregate_type) val = option_dict.get('val') if val is None: target_val = None else: # The following is for backwards compatibility when ValueTuples had # just two members. This hack avoids breaking old skins. if len(val) == 2: if val[1] in ['degree_F', 'degree_C']: val += ("group_temperature",) elif val[1] in ['inch', 'mm', 'cm']: val += ("group_rain",) # Make sure the first element is a float (and not a string). val = ValueTuple(to_float(val[0]), val[1], val[2]) target_val = weewx.units.convertStd(val, db_manager.std_unit_system)[0] # Form the interpolation dictionary inter_dict = { 'start': weeutil.weeutil.startOfDay(timespan.start), 'stop': timespan.stop, 'obs_key': obs_type, 'aggregate_type': aggregate_type, 'val': target_val, 'table_name': db_manager.table_name } # Run the query against the database: row = db_manager.getSql(DailySummaries.agg_sql_dict[aggregate_type] % inter_dict) # Each aggregation type requires a slightly different calculation. if not row or None in row: # If no row was returned, or if it contains any nulls (meaning that not # all required data was available to calculate the requested aggregate), # then set the resulting value to None. value = None elif aggregate_type in {'min', 'maxmin', 'max', 'minmax', 'meanmin', 'meanmax', 'maxsum', 'minsum', 'sum', 'gustdir'}: # These aggregates are passed through 'as is'. value = row[0] elif aggregate_type in {'mintime', 'maxmintime', 'maxtime', 'minmaxtime', 'maxsumtime', 'minsumtime', 'count', 'max_ge', 'max_le', 'min_ge', 'min_le', 'not_null', 'sum_ge', 'sum_le', 'avg_ge', 'avg_le'}: # These aggregates are always integers: value = int(row[0]) elif aggregate_type == 'avg': value = row[0] / row[1] if row[1] else None elif aggregate_type == 'rms': value = math.sqrt(row[0] / row[1]) if row[1] else None elif aggregate_type == 'vecavg': value = math.sqrt((row[0] ** 2 + row[1] ** 2) / row[2] ** 2) if row[2] else None elif aggregate_type == 'vecdir': if row == (0.0, 0.0): value = None else: deg = 90.0 - math.degrees(math.atan2(row[1], row[0])) value = deg if deg >= 0 else deg + 360.0 else: # Unknown aggregation. Should not have gotten this far... raise ValueError("Unexpected error. Aggregate type '%s'" % aggregate_type) # Look up the unit type and group of this combination of observation type and aggregation: t, g = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) # Form the ValueTuple and return it: return weewx.units.ValueTuple(value, t, g) # These are SQL statements used for calculating series from the daily summaries. # They include "group_def", which will be replaced with a database-specific GROUP BY clause common = { 'min': "SELECT MIN(dateTime), MAX(dateTime), MIN(min) " "FROM %(day_table)s " "WHERE dateTime>=%(start)s AND dateTime<%(stop)s %(group_def)s", 'max': "SELECT MIN(dateTime), MAX(dateTime), MAX(max) " "FROM %(day_table)s " "WHERE dateTime>=%(start)s AND dateTime<%(stop)s %(group_def)s", 'avg': "SELECT MIN(dateTime), MAX(dateTime), SUM(wsum), SUM(sumtime) " "FROM %(day_table)s " "WHERE dateTime>=%(start)s AND dateTime<%(stop)s %(group_def)s", 'sum': "SELECT MIN(dateTime), MAX(dateTime), SUM(sum) " "FROM %(day_table)s " "WHERE dateTime>=%(start)s AND dateTime<%(stop)s %(group_def)s", 'count': "SELECT MIN(dateTime), MAX(dateTime), SUM(count) " "FROM %(day_table)s " "WHERE dateTime>=%(start)s AND dateTime<%(stop)s %(group_def)s", } # Database- and interval-specific "GROUP BY" clauses. group_defs = { 'sqlite': { 'day': "GROUP BY CAST(" " (julianday(dateTime,'unixepoch','localtime') - 0.5 " " - CAST(julianday(%(sod)s, 'unixepoch','localtime') AS int)) " " / %(agg_days)s " "AS int)", 'month': "GROUP BY strftime('%%Y-%%m',dateTime,'unixepoch','localtime') ", 'year': "GROUP BY strftime('%%Y',dateTime,'unixepoch','localtime') ", }, 'mysql': { 'day': "GROUP BY TRUNCATE((TO_DAYS(FROM_UNIXTIME(dateTime)) " "- TO_DAYS(FROM_UNIXTIME(%(sod)s)))/ %(agg_days)s, 0) ", 'month': "GROUP BY DATE_FORMAT(FROM_UNIXTIME(dateTime), '%%%%Y-%%%%m') ", 'year': "GROUP BY DATE_FORMAT(FROM_UNIXTIME(dateTime), '%%%%Y') ", }, } @staticmethod def get_series(obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): # We cannot use the daily summaries if there is no aggregation if not aggregate_type: raise weewx.UnknownAggregation(aggregate_type) aggregate_type = aggregate_type.lower() # Raise exception if we don't know about this type of aggregation if aggregate_type not in DailySummaries.common: raise weewx.UnknownAggregation(aggregate_type) # Check to see whether we can use the daily summaries: DailySummaries.check_eligibility(obs_type, timespan, db_manager, aggregate_type) # We also have to make sure the aggregation interval is either the length of a nominal # month or year, or some multiple of a calendar day. aggregate_interval = weeutil.weeutil.nominal_spans(aggregate_interval) if aggregate_interval != weeutil.weeutil.nominal_intervals['year'] \ and aggregate_interval != weeutil.weeutil.nominal_intervals['month'] \ and aggregate_interval % 86400: raise weewx.UnknownAggregation(aggregate_interval) # We're good. Proceed. dbtype = db_manager.connection.dbtype interp_dict = { 'agg_days': aggregate_interval / 86400, 'day_table': "%s_day_%s" % (db_manager.table_name, obs_type), 'obs_type': obs_type, 'sod': weeutil.weeutil.startOfDay(timespan.start), 'start': timespan.start, 'stop': timespan.stop, } if aggregate_interval == weeutil.weeutil.nominal_intervals['year']: group_by_group = 'year' elif aggregate_interval == weeutil.weeutil.nominal_intervals['month']: group_by_group = 'month' else: group_by_group = 'day' # Add the database-specific GROUP_BY clause to the interpolation dictionary interp_dict['group_def'] = DailySummaries.group_defs[dbtype][group_by_group] % interp_dict # This is the final SELECT statement. sql_stmt = DailySummaries.common[aggregate_type] % interp_dict start_list = list() stop_list = list() data_list = list() for row in db_manager.genSql(sql_stmt): # Find the start of this aggregation interval. That's easy: it's the minimum value. start_time = row[0] # The stop is a little trickier. It's the maximum dateTime in the interval, plus one # day. The extra day is needed because the timestamp marks the beginning of a day in a # daily summary. stop_date = datetime.date.fromtimestamp(row[1]) + datetime.timedelta(days=1) stop_time = int(time.mktime(stop_date.timetuple())) if aggregate_type in {'min', 'max', 'sum', 'count'}: data = row[2] elif aggregate_type == 'avg': data = row[2] / row[3] if row[3] else None else: # Shouldn't really have made it here. Fail hard raise ValueError("Unknown aggregation type %s" % aggregate_type) start_list.append(start_time) stop_list.append(stop_time) data_list.append(data) # Look up the unit type and group of this combination of observation type and aggregation: unit, unit_group = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) return (ValueTuple(start_list, 'unix_epoch', 'group_time'), ValueTuple(stop_list, 'unix_epoch', 'group_time'), ValueTuple(data_list, unit, unit_group)) @staticmethod def check_eligibility(obs_type, timespan, db_manager, aggregate_type): # It has to be a type we know about if not hasattr(db_manager, 'daykeys') or obs_type not in db_manager.daykeys: raise weewx.UnknownType(obs_type) # We cannot use the day summaries if the starting and ending times of the aggregation # interval are not on midnight boundaries, and are not the first or last records in the # database. if db_manager.first_timestamp is None or db_manager.last_timestamp is None: raise weewx.UnknownAggregation(aggregate_type) if not (isStartOfDay(timespan.start) or timespan.start == db_manager.first_timestamp) \ or not (isStartOfDay(timespan.stop) or timespan.stop == db_manager.last_timestamp): raise weewx.UnknownAggregation(aggregate_type) # # ######################## Class AggregateHeatCool ############################## # class AggregateHeatCool(XType): """Calculate heating and cooling degree-days.""" # Default base temperature and unit type for heating and cooling degree days, # as a value tuple default_heatbase = (65.0, "degree_F", "group_temperature") default_coolbase = (65.0, "degree_F", "group_temperature") default_growbase = (50.0, "degree_F", "group_temperature") @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Returns heating and cooling degree days over a time period. obs_type: The type over which aggregation is to be done. Must be one of 'heatdeg', 'cooldeg', or 'growdeg'. timespan: An instance of weeutil.Timespan with the time period over which aggregation is to be done. aggregate_type: The type of aggregation to be done. Must be 'avg' or 'sum'. db_manager: An instance of weewx.manager.Manager or subclass. option_dict: Not used in this version. returns: A ValueTuple containing the result. """ # Check to see whether heating or cooling degree days are being asked for: if obs_type not in ['heatdeg', 'cooldeg', 'growdeg']: raise weewx.UnknownType(obs_type) # Only summation (total) or average heating or cooling degree days is supported: if aggregate_type not in {'sum', 'avg', 'not_null'}: raise weewx.UnknownAggregation(aggregate_type) # Get the base for heating and cooling degree-days units_dict = option_dict.get('skin_dict', {}).get('Units', {}) dd_dict = units_dict.get('DegreeDays', {}) heatbase = dd_dict.get('heating_base', AggregateHeatCool.default_heatbase) coolbase = dd_dict.get('cooling_base', AggregateHeatCool.default_coolbase) growbase = dd_dict.get('growing_base', AggregateHeatCool.default_growbase) # Convert to a ValueTuple in the same unit system as the database heatbase_t = weewx.units.convertStd((float(heatbase[0]), heatbase[1], "group_temperature"), db_manager.std_unit_system) coolbase_t = weewx.units.convertStd((float(coolbase[0]), coolbase[1], "group_temperature"), db_manager.std_unit_system) growbase_t = weewx.units.convertStd((float(growbase[0]), growbase[1], "group_temperature"), db_manager.std_unit_system) total = 0.0 count = 0 for daySpan in weeutil.weeutil.genDaySpans(timespan.start, timespan.stop): # Get the average temperature for the day as a value tuple: Tavg_t = DailySummaries.get_aggregate('outTemp', daySpan, 'avg', db_manager) # Make sure it's valid before including it in the aggregation: if Tavg_t is not None and Tavg_t[0] is not None: if aggregate_type == 'not_null': return ValueTuple(True, 'boolean', 'group_boolean') if obs_type == 'heatdeg': total += weewx.wxformulas.heating_degrees(Tavg_t[0], heatbase_t[0]) elif obs_type == 'cooldeg': total += weewx.wxformulas.cooling_degrees(Tavg_t[0], coolbase_t[0]) else: total += weewx.wxformulas.cooling_degrees(Tavg_t[0], growbase_t[0]) count += 1 if aggregate_type == 'not_null': value = False elif aggregate_type == 'sum': value = total else: value = total / count if count else None # Look up the unit type and group of the result: t, g = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) # Return as a value tuple return weewx.units.ValueTuple(value, t, g) class XTypeTable(XType): """Calculate a series for an xtype. An xtype may not necessarily be in the database, so this version calculates it on the fly. Note: this version only works if no aggregation has been requested.""" @staticmethod def get_series(obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): """Get a series of an xtype, by using the main archive table. Works only for no aggregation. """ start_vec = list() stop_vec = list() data_vec = list() if aggregate_type: # This version does not know how to do aggregations, although this could be # added in the future. raise weewx.UnknownAggregation(aggregate_type) else: # No aggregation std_unit_system = None # Hit the database. for record in db_manager.genBatchRecords(*timespan): if std_unit_system: if std_unit_system != record['usUnits']: raise weewx.UnsupportedFeature("Unit system cannot change " "within a series.") else: std_unit_system = record['usUnits'] # Given a record, use the xtypes system to calculate a value: try: value = get_scalar(obs_type, record, db_manager) data_vec.append(value[0]) except weewx.CannotCalculate: data_vec.append(None) start_vec.append(record['dateTime'] - record['interval'] * 60) stop_vec.append(record['dateTime']) unit, unit_group = weewx.units.getStandardUnitType(std_unit_system, obs_type) return (ValueTuple(start_vec, 'unix_epoch', 'group_time'), ValueTuple(stop_vec, 'unix_epoch', 'group_time'), ValueTuple(data_vec, unit, unit_group)) @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Calculate an aggregate value for an xtype. Addresses issue #864. """ # This version offers a limited set of aggregation types if aggregate_type not in {'sum', 'count', 'avg', 'max', 'min', 'mintime', 'maxtime', 'not_null'}: raise weewx.UnknownAggregation(aggregate_type) std_unit_system = None total = 0.0 count = 0 minimum = None maximum = None mintime = None maxtime = None # Hit the database. for record in db_manager.genBatchRecords(*timespan): if std_unit_system: if std_unit_system != record['usUnits']: raise weewx.UnsupportedFeature("Unit system cannot change within the database") else: std_unit_system = record['usUnits'] # Given a record, use the xtypes system to calculate a value. If the value cannot be # calculated a CannotCalculate exception will be raised. Be prepared to catch it. try: # A ValueTuple will be returned, so use only the first element. value = get_scalar(obs_type, record, db_manager)[0] except weewx.CannotCalculate: value = None if value is not None: if aggregate_type == 'not_null': return ValueTuple(True, 'boolean', 'group_boolean') total += value count += 1 if minimum is None or value < minimum: minimum = value mintime = record['dateTime'] if maximum is None or value > maximum: maximum = value maxtime = record['dateTime'] if aggregate_type == 'sum': result = total elif aggregate_type == 'count': result = count elif aggregate_type == 'avg': result = total / count if count else None elif aggregate_type == 'mintime': result = mintime elif aggregate_type == 'maxtime': result = maxtime elif aggregate_type == 'min': result = minimum elif aggregate_type == 'max': result = maximum elif aggregate_type == 'not_null': return ValueTuple(False, 'boolean', 'group_boolean') else: # We should never get here. raise ValueError(f"Unexpected aggregation type {aggregate_type}") u, g = weewx.units.getStandardUnitType(std_unit_system, obs_type, aggregate_type) return weewx.units.ValueTuple(result, u, g) # ############################# WindVec extensions ######################################### class WindVec(XType): """Extensions for calculating special observation types 'windvec' and 'windgustvec' from the main archive table. It provides functions for calculating series, and for calculating aggregates. """ windvec_types = { 'windvec': ('windSpeed', 'windDir'), 'windgustvec': ('windGust', 'windGustDir') } agg_sql_dict = { 'count': "SELECT COUNT(dateTime), usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s AND %(mag)s IS NOT NULL", 'first': "SELECT %(mag)s, %(dir)s, usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s AND %(mag)s IS NOT NULL " "ORDER BY dateTime ASC LIMIT 1", 'last': "SELECT %(mag)s, %(dir)s, usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s AND %(mag)s IS NOT NULL " "ORDER BY dateTime DESC LIMIT 1", 'min': "SELECT %(mag)s, %(dir)s, usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s AND %(mag)s IS NOT NULL " "ORDER BY %(mag)s ASC LIMIT 1;", 'max': "SELECT %(mag)s, %(dir)s, usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s AND %(mag)s IS NOT NULL " "ORDER BY %(mag)s DESC LIMIT 1;", 'not_null': "SELECT 1, usUnits FROM %(table_name)s " "WHERE dateTime > %(start)s AND dateTime <= %(stop)s " "AND %(mag)s IS NOT NULL LIMIT 1;" } # for types 'avg', 'sum' complex_sql_wind = 'SELECT %(mag)s, %(dir)s, usUnits FROM %(table_name)s WHERE dateTime > ? ' \ 'AND dateTime <= ?' @staticmethod def get_series(obs_type, timespan, db_manager, aggregate_type=None, aggregate_interval=None, **option_dict): """Get a series, possibly with aggregation, for special 'wind vector' types. These are typically used for the wind vector plots. """ # Check to see if the requested type is not 'windvec' or 'windgustvec' if obs_type not in WindVec.windvec_types: # The type is not one of the extended wind types. We can't handle it. raise weewx.UnknownType(obs_type) # It is an extended wind type. Prepare the lists that will hold the # final results. start_vec = list() stop_vec = list() data_vec = list() # Is aggregation requested? if aggregate_type: # Yes. Just use the regular series function. When it comes time to do the aggregation, # the specialized function WindVec.get_aggregate() (defined below), will be used. return ArchiveTable.get_series(obs_type, timespan, db_manager, aggregate_type, aggregate_interval, **option_dict) else: # No aggregation desired. However, we have will have to assemble the wind vector from # its flattened types. This SQL select string will select the proper wind types sql_str = 'SELECT dateTime, %s, %s, usUnits, `interval` FROM %s ' \ 'WHERE dateTime >= ? AND dateTime <= ?' \ % (WindVec.windvec_types[obs_type][0], WindVec.windvec_types[obs_type][1], db_manager.table_name) std_unit_system = None for record in db_manager.genSql(sql_str, timespan): ts, magnitude, direction, unit_system, interval = record if std_unit_system: if std_unit_system != unit_system: raise weewx.UnsupportedFeature( "Unit type cannot change within a time interval.") else: std_unit_system = unit_system value = weeutil.weeutil.to_complex(magnitude, direction) start_vec.append(ts - interval * 60) stop_vec.append(ts) data_vec.append(value) unit, unit_group = weewx.units.getStandardUnitType(std_unit_system, obs_type, aggregate_type) return (ValueTuple(start_vec, 'unix_epoch', 'group_time'), ValueTuple(stop_vec, 'unix_epoch', 'group_time'), ValueTuple(data_vec, unit, unit_group)) @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Returns an aggregation of a wind vector type over a timespan by using the main archive table. Args: obs_type (str): The type over which aggregation is to be done. For this function, it must be 'windvec' or 'windgustvec'. Anything else will cause an exception of type weewx.UnknownType to be raised. timespan (weeutil.weeutil.TimeSpan): An instance of Timespan with the time period over which aggregation is to be done. aggregate_type (str): The type of aggregation to be done. For this function, must be 'avg', 'sum', 'count', 'first', 'last', 'min', or 'max'. Anything else will cause weewx.UnknownAggregation to be raised. db_manager (weewx.manager.Manager): An instance of Manager or subclass. option_dict (dict): Not used in this version. Returns: ValueTuple: A ValueTuple containing the result. Note that the value contained in the ValueTuple will be a complex number. """ if obs_type not in WindVec.windvec_types: raise weewx.UnknownType(obs_type) aggregate_type = aggregate_type.lower() # Raise exception if we don't know about this type of aggregation if aggregate_type not in ['avg', 'sum'] + list(WindVec.agg_sql_dict.keys()): raise weewx.UnknownAggregation(aggregate_type) # Form the interpolation dictionary interpolation_dict = { 'dir': WindVec.windvec_types[obs_type][1], 'mag': WindVec.windvec_types[obs_type][0], 'start': timespan.start, 'stop': timespan.stop, 'table_name': db_manager.table_name } if aggregate_type in WindVec.agg_sql_dict: # For these types (e.g., first, last, etc.), we can do the aggregation in a SELECT # statement. select_stmt = WindVec.agg_sql_dict[aggregate_type] % interpolation_dict try: row = db_manager.getSql(select_stmt) except weedb.NoColumnError as e: raise weewx.UnknownType(e) if aggregate_type == 'not_null': value = row is not None std_unit_system = db_manager.std_unit_system else: if row: if aggregate_type == 'count': value, std_unit_system = row else: magnitude, direction, std_unit_system = row value = weeutil.weeutil.to_complex(magnitude, direction) else: std_unit_system = db_manager.std_unit_system value = None else: # The requested aggregation must be either 'sum' or 'avg', which will require some # arithmetic in Python, so it cannot be done by a simple query. std_unit_system = None xsum = ysum = 0.0 count = 0 select_stmt = WindVec.complex_sql_wind % interpolation_dict for rec in db_manager.genSql(select_stmt, timespan): # Unpack the record mag, direction, unit_system = rec # Ignore rows where magnitude is NULL if mag is None: continue # A good direction is necessary unless the mag is zero: if mag == 0.0 or direction is not None: if std_unit_system: if std_unit_system != unit_system: raise weewx.UnsupportedFeature( "Unit type cannot change within a time interval.") else: std_unit_system = unit_system # An undefined direction is OK (and expected) if the magnitude # is zero. But, in that case, it doesn't contribute to the sums either. if direction is None: # Sanity check if weewx.debug: assert (mag == 0.0) else: try: xsum += mag * math.cos(math.radians(90.0 - direction)) ysum += mag * math.sin(math.radians(90.0 - direction)) except TypeError as e: raise TypeError("direction=%s" % direction) from e count += 1 # We've gone through the whole interval. Were there any good data? if count: # Form the requested aggregation: if aggregate_type == 'sum': value = complex(xsum, ysum) else: # Must be 'avg' value = complex(xsum, ysum) / count else: value = None # Look up the unit type and group of this combination of observation type and aggregation: t, g = weewx.units.getStandardUnitType(std_unit_system, obs_type, aggregate_type) # Form the ValueTuple and return it: return weewx.units.ValueTuple(value, t, g) class WindVecDaily(XType): """Extension for calculating the average windvec, using the daily summaries.""" @staticmethod def get_aggregate(obs_type, timespan, aggregate_type, db_manager, **option_dict): """Optimization for calculating 'avg' aggregations for type 'windvec'. The timespan must be on a daily boundary.""" # We can only do observation type 'windvec' if obs_type != 'windvec': # We can't handle it. raise weewx.UnknownType(obs_type) # We can only do 'avg' or 'not_null if aggregate_type not in ['avg', 'not_null']: raise weewx.UnknownAggregation(aggregate_type) # Check to see whether we can use the daily summaries: DailySummaries.check_eligibility('wind', timespan, db_manager, aggregate_type) if aggregate_type == 'not_null': # Aggregate type 'not_null' is actually run against 'wind'. return DailySummaries.get_aggregate('wind', timespan, 'not_null', db_manager, **option_dict) sql = 'SELECT SUM(xsum), SUM(ysum), SUM(dirsumtime) ' \ 'FROM %s_day_wind WHERE dateTime>=? AND dateTime<?;' % db_manager.table_name row = db_manager.getSql(sql, timespan) if not row or None in row or not row[2]: # If no row was returned, or if it contains any nulls (meaning that not # all required data was available to calculate the requested aggregate), # then set the resulting value to None. value = None else: value = complex(row[0], row[1]) / row[2] # Look up the unit type and group of the result: t, g = weewx.units.getStandardUnitType(db_manager.std_unit_system, obs_type, aggregate_type) # Return as a value tuple return weewx.units.ValueTuple(value, t, g) # Add instantiated versions to the extension list. Order matters. We want the highly-specialized # versions first, because they might offer optimizations. xtypes.append(WindVecDaily()) xtypes.append(WindVec()) xtypes.append(AggregateHeatCool()) xtypes.append(DailySummaries()) xtypes.append(ArchiveTable()) xtypes.append(XTypeTable())