Hm, are you 100% sure that you really received as many samples as you ordered before?
On Sun, 2019-05-12 at 12:41 +0300, Ivan Zahartchuk wrote: > Good morning. Thanks for your answers, I fixed the record in the data > array. But it did not help me. But I noticed that everything works > for me when I add a cycle > while samps: > samps = self.streamer_rx.recv (self.recv_buff, > self.metadata_rx) > after > self.stream_cmd = lib.types.stream_cmd > (lib.types.stream_mode.stop_cont) > self.streamer_rx.issue_stream_cmd (self.stream_cmd). > I don’t fully understand why this cycle after closing reads and > besides it very much slows down the work of the program, which for me > is a critical moment. > > > def test_reciev_2(self, freq, bandwich): > complex_buffs = np.empty((len([0]), self.samples * len(freq))) > buffs = np.empty((len([0]), self.samples * len(freq))) > result = np.empty((len([0]), self.samples), dtype=np.complex64) > > for i, freqq in enumerate(freq): > > recv_samps = 0 > # self.usrp.set_rx_rate(bandwich[i]) > k = uhd.types.TuneRequest(freqq) > # k.args(uhd.types.device_addr("mode_n=integer")) > self.usrp.set_rx_freq(k) > self.stream_cmd = > uhd.types.StreamCMD(uhd.types.StreamMode.start_cont) > self.stream_cmd.stream_now = True > self.streamer_rx.issue_stream_cmd(self.stream_cmd) > while self.usrp.get_rx_sensor("lo_locked").to_bool() != True: > continue > > samps = np.array([], dtype=np.complex64) > while recv_samps < self.samples: > > samps = self.streamer_rx.recv(self.recv_buff, > self.metadata_rx) > if self.metadata_rx.error_code != > lib.types.rx_metadata_error_code.none: > print(self.metadata_rx.strerror()) > if samps: > real_samps = min(self.samples - recv_samps, samps) > result[:, recv_samps:recv_samps + real_samps] = > self.recv_buff[:, 0:real_samps] > recv_samps += real_samps > # print (self.usrp.get_rx_sensor('rssi')) > # print(self.streamer_rx.get_max_num_samps()) > > # self.stream_cmd.time_spec = lib.types.time_spec(0) > self.stream_cmd = > lib.types.stream_cmd(lib.types.stream_mode.stop_cont) > self.streamer_rx.issue_stream_cmd(self.stream_cmd) > > while samps: > samps = self.streamer_rx.recv(self.recv_buff, > self.metadata_rx) > > #complex_buffs = np.append(complex_buffs, result).ravel() > # correct_result=result > #correct_result_1 = result - (np.mean(result.real) + > np.mean(result.imag) * 1j) > # correct_result.real=result.real-np.mean(result.real) > # correct_result.imag = result.imag - np.mean(result.imag) > > PSD = self.fft_test(result) > > # PSD[8188:8202]=np.mean(PSD[8180:8188]) > > buffs[:, i * value.samples:value.samples * i + value.samples] > = PSD[:, 0:value.samples] > > return complex_buffs, buffs.ravel() > > вс, 12 мая 2019 г. в 02:35, Marcus Müller <marcus.muel...@ettus.com>: > > Ah, I see you think that this burst can't be too hard on your > > computer, > > because it arrives "at once"? That's not the case. > > On Sun, 2019-05-12 at 01:18 +0200, Marcus Müller wrote: > > > Um, sorry, I don't understand your sentence. Of course we have to > > > care > > > about these samples. Otherwise, we get an overflow. That is > > literally > > > what overflow means: Samples not getting received by the program > > > using > > > UHD in time before a buffer overflows. > > > > > > On Sat, 2019-05-11 at 22:29 +0300, Ivan Zahartchuk wrote: > > > > No, I meant that all system performance is enabled only when we > > > > make > > > > a request and not all the time. And we no longer care what we > > do > > > > next > > > > with these samples, they are just an array and the board does > > not > > > > require constant reading. > > > > > > > > вс, 12 мая 2019 г. в 01:03, Marcus Müller < > > marcus.muel...@ettus.com > > > > >: > > > > > I'm not quite sure how you come to the conclusion that we > > > > > wouldn't > > > > > be > > > > > tied to system performance in that case: that number of > > samples > > > > > still > > > > > needs to be received by the software running on the computer. > > > > > > > > > > Best regards, > > > > > Marcus > > > > > > > > > > On Sat, 2019-05-11 at 20:39 +0300, Ivan Zahartchuk wrote: > > > > > > Thanks for the help. I will try to fix everything tomorrow > > and > > > > > see > > > > > > the result. But tell me, maybe I don’t fully understand how > > > > > > num_sams_and_done works. If I understand correctly, this > > method > > > > > does > > > > > > not send a continuous stream of data but simply gives a > > certain > > > > > > number of samples upon request. And in this case, we are > > not > > > > > > tied > > > > > to > > > > > > system performance. Maybe I do not understand this. Could > > you > > > > > clarify > > > > > > this? > > > > > > > > > > > > сб, 11 мая 2019 г. в 23:19, Marcus Müller < > > > > > marcus.muel...@ettus.com>: > > > > > > > Dear Ivan, > > > > > > > > > > > > > > On Sat, 2019-05-11 at 20:00 +0300, Ivan Zahartchuk wrote: > > > > > > > > Sorry I did not specify. When working with the > > start_cont > > > > > mode > > > > > > > with a > > > > > > > > frequency of more than 5 MHz, I have an overflow > > error. > > > > > > > > > > > > > > Which probably happens due to the inefficient way you > > handle > > > > > the > > > > > > > data; > > > > > > > your program simply is too slow. > > > > > > > > > > > > > > > That leads to a chaotic change in the spectrum. I agree > > > > > > > > about > > > > > the > > > > > > > > wrong allocation of memory, but I created my own data > > array > > > > > and > > > > > > > ran > > > > > > > > it through the whole chain of changes and additions and > > had > > > > > what > > > > > > > I > > > > > > > > expected at the output. > > > > > > > > > > > > > > Huh? When using offline data, your computationally load > > > > > > > doesn't > > > > > > > matter; > > > > > > > I'm not sure I'm understanding you correctly here! > > > > > > > > > > > > > > > Moreover, the data array was much more than what I get > > from > > > > > the > > > > > > > > board. In this regard, I decided that the matter is in > > the > > > > > > > reading > > > > > > > > from the board. > > > > > > > > > > > > > > I'll allow myself to doubt that: Again, the fact that > > your > > > > > > > data > > > > > > > array > > > > > > > runs through smoothly is no indication for your software > > > > > > > being > > > > > fast > > > > > > > enough to keep up with the torrent of samples UHD will > > give > > > > > you! > > > > > > > When > > > > > > > it doesn't keep up, you see exactly what you're > > describing: > > > > > > > UHD > > > > > > > reporting overflows due to your software not fetching > > samples > > > > > fast > > > > > > > enough. Overflows aren't UHD bugs, they are problems in > > the > > > > > > > way > > > > > you > > > > > > > use > > > > > > > UHD! > > > > > > > > > > > > > > > I have seen examples, but start_cont mode is used > > there > > > > > > > > and > > > > > > > there > > > > > > > > are not so many frequency adjustments. Therefore, I > > decided > > > > > to > > > > > > > use > > > > > > > > the num_sams_and_done mode, but there is also a problem > > > > > > > > with > > > > > it > > > > > > > which > > > > > > > > is described in the previous message. If you have more > > > > > > > suggestions, I > > > > > > > > will be very grateful to you. > > > > > > > > > > > > > > Well, exactly what I wrote in my previous mail: you need > > to > > > > > make > > > > > > > your > > > > > > > software fast enough. Preallocate the buffer; don't > > append to > > > > > its > > > > > > > end. > > > > > > > > > > > > > > Aside from that, do some profiling. Under linux, `perf > > top > > > > > > > -ag > > > > > > > python > > > > > > > yourscript.py` is your friend to figure out where your > > > > > > > program > > > > > > > spends > > > > > > > its CPU cycles. > > > > > > > > > > > > > > Best regards, > > > > > > > Marcus > > > > > > > > > > > > > > > сб, 11 мая 2019 г. в 22:27, Marcus Müller < > > > > > > > marcus.muel...@ettus.com>: > > > > > > > > > Dear Ivan, > > > > > > > > > > > > > > > > > > it's not clear what you've modified. I'm not aware of > > any > > > > > UHD > > > > > > > > > function > > > > > > > > > that restricts any frequency to 5 MHz. > > > > > > > > > Could you elaborate on which code you're basing this > > on? > > > > > > > > > > > > > > > > > > Also, while I really like the Python interface, if > > you're > > > > > > > really > > > > > > > > > after > > > > > > > > > high-rate sampling, it might simply not be the > > optimal > > > > > thing to > > > > > > > > > use: > > > > > > > > > You'd have to be very careful in Pythonland to not > > run > > > > > > > > > into > > > > > > > > > performance > > > > > > > > > problems once you've gotten the samples from UHD: > > > > > > > > > > > > > > > > > > > > > > > complex_buffs=np.append(complex_buffs,result).ravel() > > > > > > > > > A very bad idea. You're constantly re-allocating > > buffers > > > > > here. > > > > > > > > > Don't do > > > > > > > > > that. No matter in which programming language you'd > > do > > > > > this, > > > > > > > you'd > > > > > > > > > make > > > > > > > > > sure that the buffer is large enough for your data > > > > > collection > > > > > > > to > > > > > > > > > begin > > > > > > > > > with and then tell the UHD library to fill the > > > > > > > > > appropriate > > > > > part > > > > > > > in > > > > > > > > > that > > > > > > > > > buffer to avoid a) having to ask for a larger buffer > > > > > regularly > > > > > > > and > > > > > > > > > b) > > > > > > > > > avoid copying data. > > > > > > > > > Asking for an appended version of your last buffer > > means > > > > > that > > > > > > > > > something > > > > > > > > > has to allocate a larger buffer – which comes at very > > > > > > > > > large > > > > > > > cost! > > > > > > > > > Best regards, > > > > > > > > > Marcus > > > > > > > > > > > > > > > > > > On Sat, 2019-05-11 at 21:31 +0300, Ivan Zahartchuk > > via > > > > > USRP- > > > > > > > users > > > > > > > > > wrote: > > > > > > > > > > Hello. My task is to make a broadband spectrum > > analyzer > > > > > on > > > > > > > the > > > > > > > > > usrp > > > > > > > > > > b200 board. For this, the standard functions for > > > > > > > > > > reading > > > > > > > samples > > > > > > > > > in > > > > > > > > > > python are not suitable for me. Therefore, I edited > > > > > > > > > > them. > > > > > > > When > > > > > > > > > > reading samples using the start_con method, I > > cannot > > > > > specify > > > > > > > a > > > > > > > > > band > > > > > > > > > > greater than 5 MHz. Therefore, I use the > > > > > num_sams_and_done > > > > > > > > > method. > > > > > > > > > > But I have problems with him. The fact is that my > > > > > frequency > > > > > > > which > > > > > > > > > I > > > > > > > > > > know appears in the wrong place. For example, I > > > > > > > > > > generate > > > > > a > > > > > > > > > frequency > > > > > > > > > > of 910 MHz and it appears at 930 MHz (with a > > bandwidth > > > > > > > > > > of > > > > > 20 > > > > > > > > > MHz). I > > > > > > > > > > can not understand what caused it. Here are my > > reading > > > > > > > functions > > > > > > > > > in > > > > > > > > > > two ways. I would be extremely grateful for the > > help. > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > def test_reciev(self,freq,bandwich): > > > > > > > > > > complex_buffs=np.array([]) > > > > > > > > > > buffs = np.array([]) > > > > > > > > > > result = np.empty((len([0]), self.samples), > > > > > > > > > dtype=np.complex64) > > > > > > > > > > for i, freqq in enumerate(freq): > > > > > > > > > > > > > > > > > > > > recv_samps = 0 > > > > > > > > > > #self.usrp.set_rx_rate(bandwich[i]) > > > > > > > > > > k=uhd.types.TuneRequest(freqq) > > > > > > > > > > > > #k.args(uhd.types.device_addr("mode_n=integer") > > > > > > > > > > ) > > > > > > > > > > self.usrp.set_rx_freq(k) > > > > > > > > > > self.stream_cmd = > > > > > > > > > > > > uhd.types.StreamCMD(uhd.types.StreamMode.start_cont) > > > > > > > > > > self.stream_cmd.stream_now = True > > > > > > > > > > > > > > > self.streamer_rx.issue_stream_cmd(self.stream_cmd) > > > > > > > > > > while > > > > > self.usrp.get_rx_sensor("lo_locked").to_bool() > > > > > > > != > > > > > > > > > True: > > > > > > > > > > continue > > > > > > > > > > > > > > > > > > > > samps = np.array([], dtype=np.complex64) > > > > > > > > > > while recv_samps < self.samples: > > > > > > > > > > > > > > > > > > > > samps = > > > > > > > > > > self.streamer_rx.recv(self.recv_buff, > > > > > > > > > > self.metadata_rx) > > > > > > > > > > if self.metadata_rx.error_code != > > > > > > > > > > lib.types.rx_metadata_error_code.none: > > > > > > > > > > print(self.metadata_rx.strerror()) > > > > > > > > > > if samps: > > > > > > > > > > real_samps = min(self.samples - > > > > > recv_samps, > > > > > > > > > samps) > > > > > > > > > > result[:, recv_samps:recv_samps + > > > > > real_samps] > > > > > > > = > > > > > > > > > > self.recv_buff[:, 0:real_samps] > > > > > > > > > > recv_samps += real_samps > > > > > > > > > > #print (self.usrp.get_rx_sensor('rssi')) > > > > > > > > > > > > #print(self.streamer_rx.get_max_num_samps()) > > > > > > > > > > #while samps: > > > > > > > > > > # samps = > > > > > self.streamer_rx.recv(self.recv_buff, > > > > > > > > > > self.metadata_rx) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > #self.stream_cmd.time_spec = > > > > > lib.types.time_spec(0) > > > > > > > > > > self.stream_cmd = > > > > > > > > > > > > lib.types.stream_cmd(lib.types.stream_mode.stop_cont) > > > > > > > > > > > > > > > self.streamer_rx.issue_stream_cmd(self.stream_cmd) > > > > > > > > > > > > > > > complex_buffs=np.append(complex_buffs,result).ravel() > > > > > > > > > > #correct_result=result > > > > > > > > > > correct_result_1=result- > > > > > > > > > > (np.mean(result.real)+np.mean(result.imag)*1j) > > > > > > > > > > #correct_result.real=result.real- > > > > > np.mean(result.real) > > > > > > > > > > #correct_result.imag = result.imag - > > > > > > > np.mean(result.imag) > > > > > > > > > > PSD = self.fft_test(result) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > #PSD[8188:8202]=np.mean(PSD[8180:8188]) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > buffs = np.append(buffs,PSD) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > return complex_buffs, > > > > > > > > > > > > > > > buffs#np.append(buffs[value.samples:],buffs[:value.samples]) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > def test_reciev(self,freq,bandwich): > > > > > > > > > > complex_buffs=np.array([]) > > > > > > > > > > buffs = np.array([]) > > > > > > > > > > result = np.empty((len([0]), self.samples), > > > > > > > > > dtype=np.complex64) > > > > > > > > > > for i, freqq in enumerate(freq): > > > > > > > > > > > > > > > > > > > > recv_samps = 0 > > > > > > > > > > #self.usrp.set_rx_rate(bandwich[i]) > > > > > > > > > > k=uhd.types.TuneRequest(freqq) > > > > > > > > > > > > #k.args(uhd.types.device_addr("mode_n=integer") > > > > > > > > > > ) > > > > > > > > > > self.usrp.set_rx_freq(k) > > > > > > > > > > > > > > > > > > > > while > > > > > self.usrp.get_rx_sensor("lo_locked").to_bool() > > > > > > > != > > > > > > > > > True: > > > > > > > > > > continue > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > while recv_samps < self.samples: > > > > > > > > > > > > > > > > > > > > samps = > > > > > > > > > > self.streamer_rx.recv(self.recv_buff, > > > > > > > > > > self.metadata_rx) > > > > > > > > > > if self.metadata_rx.error_code != > > > > > > > > > > lib.types.rx_metadata_error_code.none: > > > > > > > > > > print(self.metadata_rx.strerror()) > > > > > > > > > > if samps: > > > > > > > > > > real_samps = min(self.samples - > > > > > recv_samps, > > > > > > > > > samps) > > > > > > > > > > result[:, recv_samps:recv_samps + > > > > > real_samps] > > > > > > > = > > > > > > > > > > self.recv_buff[:, 0:real_samps] > > > > > > > > > > recv_samps += real_samps > > > > > > > > > > #print (self.usrp.get_rx_sensor('rssi')) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > self.stream_cmd.time_spec = > > > > > lib.types.time_spec(0) > > > > > > > > > > > > > > > self.streamer_rx.issue_stream_cmd(self.stream_cmd) > > > > > > > > > > > > > > > complex_buffs=np.append(complex_buffs,result).ravel() > > > > > > > > > > correct_result=result > > > > > > > > > > correct_result_1=result- > > > > > > > > > > (np.mean(result.real)+np.mean(result.imag)*1j) > > > > > > > > > > correct_result.real=result.real- > > > > > np.mean(result.real) > > > > > > > > > > correct_result.imag = result.imag - > > > > > > > np.mean(result.imag) > > > > > > > > > > PSD = self.fft_test(result) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > #PSD[8188:8202]=np.mean(PSD[8180:8188]) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > buffs = np.append(buffs,PSD) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > return complex_buffs, > > > > > > > > > > > > > > > buffs#np.append(buffs[value.samples:],buffs[:value.samples]) > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > _______________________________________________ > > > > > > > > > > USRP-users mailing list > > > > > > > > > > USRP-users@lists.ettus.com > > > > > > > > > > > > > > > > > http://lists.ettus.com/mailman/listinfo/usrp-users_lists.ettus.com > > _______________________________________________ USRP-users mailing list USRP-users@lists.ettus.com http://lists.ettus.com/mailman/listinfo/usrp-users_lists.ettus.com