Forgot to add error log and stack traces,

15/12/16 11:17:02 INFO SchedulerFactory: Job
remoteInterpretJob_1450232220684 started by scheduler
org.apache.zeppelin.spark.SparkInterpreter2005736637
15/12/16 11:17:08 ERROR Job: Job failed
java.lang.OutOfMemoryError: Java heap space
        at scala.reflect.internal.Names$class.enterChars(Names.scala:69)
        at scala.reflect.internal.Names$class.newTermName(Names.scala:104)
        at
scala.reflect.internal.SymbolTable.newTermName(SymbolTable.scala:13)
        at scala.reflect.internal.Names$class.newTermName(Names.scala:113)
        at
scala.reflect.internal.SymbolTable.newTermName(SymbolTable.scala:13)
        at scala.reflect.internal.Names$class.newTypeName(Names.scala:116)
        at
scala.reflect.internal.SymbolTable.newTypeName(SymbolTable.scala:13)
        at scala.reflect.internal.Names$TypeName.newName(Names.scala:531)
        at scala.reflect.internal.Names$TypeName.newName(Names.scala:513)
        at scala.reflect.internal.Names$Name.append(Names.scala:424)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
        at
scala.reflect.internal.Symbols$Symbol.fullNameInternal(Symbols.scala:1044)
        at
scala.reflect.internal.Symbols$Symbol.fullNameAsName(Symbols.scala:1047)
15/12/16 11:17:08 INFO SchedulerFactory: Job
remoteInterpretJob_1450232220684 finished by scheduler
org.apache.zeppelin.spark.SparkInterpreter2005736637

Same logs are printed whenever run new job after OOME.


On Thu, Dec 24, 2015 at 9:25 AM, Jungtaek Lim <kabh...@gmail.com> wrote:

> Hi users,
>
> I've met OOME when using spark interpreter and wish to resolve this issue.
>
> - Spark version: 1.4.1 + applying SPARK-11818
> <http://issues.apache.org/jira/browse/SPARK-11818>
> - Spark cluster: Mesos 0.22.1
> - Zeppelin: commit 1ba6e2a
> <https://github.com/apache/incubator-zeppelin/commit/1ba6e2a5969e475bc926943885c120f793266147>
>  +
> applying ZEPPELIN-507 <https://issues.apache.org/jira/browse/ZEPPELIN-507>
> & ZEPPELIN-509 <https://issues.apache.org/jira/browse/ZEPPELIN-509>
> - loaded one fat driver jar via %dep
>
> I've run paragraph which dumps hbase table to hdfs several times, and
> takes memory histogram via "jmap -histo:live <pid>".
> Looking at histograms I can see that interpreter memory usages is
> increased whenever I run the paragraph.
> There could be spark app's memory leak, but nothing is clear so I'd like
> to find any other users who see the same behavior.
>
> Is anyone seeing same behavior, and could you share how to resolve?
>
> Thanks,
> Jungtaek Lim (HeartSaVioR)
>



-- 
Name : Jungtaek Lim
Blog : http://medium.com/@heartsavior
Twitter : http://twitter.com/heartsavior
LinkedIn : http://www.linkedin.com/in/heartsavior

Reply via email to