Hi All, Many thanks for getting back to me. I've managed to get this working by downloading the tagged spark 1.5.2 release and compiling it with:
./make-distribution.sh --name custom-spark --tgz -Phadoop-2.6 -Dhadoop.version=2.6.0 -Pyarn -Phive -Phive-thriftserver -Psparkr I've then downloaded the source for this version of zeppelin: https://github.com/datalayer/zeppelin-R Then compiled it with (based on the readme from the above project): mvn clean install -Pyarn -Pspark-1.5 -Dspark.version=1.5.2 -Dhadoop.version=2.6.0 -Phadoop-2.6 -Ppyspark -Dmaven.findbugs.enable=false -Drat.skip=true -Dcheckstyle.skip=true -DskipTests -pl '!flink,!ignite,!phoenix,!postgresql,!tajo,!hive,!cassandra,!lens,!kylin' Within Zeppelin this allows spark to run with yarn, as well as the ability to use the R interpreter with hive. Hope this helps someone else :-) Cheers! On Tue, Dec 15, 2015 at 5:37 PM, Sourav Mazumder < sourav.mazumde...@gmail.com> wrote: > I believe that is not going to solve the problem. > > If you need to run spark on Yarn (assuming that it is your requirement) > ensure that you run it in Yarn Client mode. Yarn Clustre mode is not > supported with Zeppelin yet. > > Regards, > Sourav > > > On Tue, Dec 15, 2015 at 9:32 AM, Felix Cheung <felixcheun...@hotmail.com> > wrote: > >> If you are not using YARN, try building your Spark distribution without >> this: >> -Pyarn >> ? >> >> >> >> On Tue, Dec 15, 2015 at 12:31 AM -0800, "cs user" <acldstk...@gmail.com> >> wrote: >> >> Hi Folks, >> >> We've been playing around with this project: >> >> https://github.com/datalayer/zeppelin-R >> >> However when we try and write a notebook using R which requires hive, we >> run into the following: >> >> Error in value[[3L]](cond): Spark SQL is not built with Hive support >> >> This is when we are using the pre compiled spark with hadoop 2.6 support. >> >> To work around this, I've tried recompiling spark with hive support. >> Accessing the hive context within an R notebook now works fine. >> >> However, it is then impossible to run existing notebooks which try to >> submit jobs via yarn, the following error is encountered: >> >> java.lang.NoSuchMethodException: >> org.apache.spark.repl.SparkILoop$SparkILoopInterpreter.classServerUri() at >> java.lang.Class.getMethod(Class.java:1678) at >> org.apache.zeppelin.spark.SparkInterpreter.createSparkContext(SparkInterpreter.java:271) >> at >> org.apache.zeppelin.spark.SparkInterpreter.getSparkContext(SparkInterpreter.java:145) >> at >> org.apache.zeppelin.spark.SparkInterpreter.open(SparkInterpreter.java:464) >> at >> org.apache.zeppelin.interpreter.ClassloaderInterpreter.open(ClassloaderInterpreter.java:74) >> at >> org.apache.zeppelin.interpreter.LazyOpenInterpreter.open(LazyOpenInterpreter.java:68) >> at >> org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:92) >> at >> org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:292) >> at org.apache.zeppelin.scheduler.Job.run(Job.java:170) at >> org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:118) >> at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471) >> at java.util.concurrent.FutureTask.run(FutureTask.java:262) at >> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178) >> at >> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >> at java.lang.Thread.run(Thread.java:745) >> >> If I switch back to the old spark home, these jobs then work fine again. >> >> I am compiling our custom version of spark with the following: >> >> ./make-distribution.sh --name custom-spark --tgz -Phadoop-2.6 >> -Dhadoop.version=2.6.0 -Pyarn -Phive -Phive-thriftserver >> >> Are there any other switches I need to add to overcome the above error? >> >> Thanks! >> >> >> >