Hi, I have downloaded and setup zeppelin on my local Ubuntu 18.04 computer, and I successfully managed to open file on Azure Storage with spark interpreter out of the box. Then I have installed the same package on a Ubuntu 14.04 server. When I try running a simple spark read parquet from an azure storage account, I get a java.io.IOException: No FileSystem for scheme: wasbs
sqlContext.read.parquet("wasbs://mycontai...@myacountsa.blob.core.windows.net/mypath") java.io.IOException: No FileSystem for scheme: wasbs at org.apache.hadoop.fs.FileSystem.getFileSystemClass(FileSystem.java:2304) at org.apache.hadoop.fs.FileSystem.createFileSystem(FileSystem.java:2311) at org.apache.hadoop.fs.FileSystem.access$200(FileSystem.java:90) at org.apache.hadoop.fs.FileSystem$Cache.getInternal(FileSystem.java:2350) at org.apache.hadoop.fs.FileSystem$Cache.get(FileSystem.java:2332) at org.apache.hadoop.fs.FileSystem.get(FileSystem.java:369) at org.apache.hadoop.fs.Path.getFileSystem(Path.java:296) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:350) at org.apache.spark.sql.execution.datasources.DataSource$$anonfun$14.apply(DataSource.scala:348) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241) at scala.collection.TraversableLike$$anonfun$flatMap$1.apply(TraversableLike.scala:241) at scala.collection.immutable.List.foreach(List.scala:381) at scala.collection.TraversableLike$clas s.flatMap(TraversableLike.scala:241) at scala.collection.immutable.List.flatMap(List.scala:344) at org.apache.spark.sql.execution.datasources.DataSource.resolveRelation(DataSource.scala:348) at org.apache.spark.sql.DataFrameReader.load(DataFrameReader.scala:178) at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:559) at org.apache.spark.sql.DataFrameReader.parquet(DataFrameReader.scala:543) ... 52 elided I copied the interpreter.json file from my local computer to the server but that has not changed anything. Should it be working ootb or the fact that it worked on my local computer may be due to some local spark configuration or environment variables ? Thank you, Metin