Hi Felix, Yes it is the same host that I run Spark shell and I start Zeppelin on.
Have you observed this before? Thanks Dr Mich Talebzadeh LinkedIn * https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* http://talebzadehmich.wordpress.com *Disclaimer:* Use it at your own risk. Any and all responsibility for any loss, damage or destruction of data or any other property which may arise from relying on this email's technical content is explicitly disclaimed. The author will in no case be liable for any monetary damages arising from such loss, damage or destruction. On 29 October 2016 at 21:53, Felix Cheung <felixcheun...@hotmail.com> wrote: > When you run the code in spark-shell - is that the same machine as where > Zeppelin is running? > > It looks like you are getting socket connection timeout when Spark, > running from Zeppelin, is trying to connect to HBASE. > > > _____________________________ > From: Mich Talebzadeh <mich.talebza...@gmail.com> > Sent: Saturday, October 29, 2016 1:30 PM > Subject: Zeppelin using Spark to access Hbase throws error > To: <users@zeppelin.apache.org>, <u...@hbase.apache.org> > > > Spark 2.0.1, Zeppelin 0.6.1, hbase-1.2.3 > > The below code runs fine with Spark shell. > > import org.apache.spark._ > import org.apache.spark.rdd.NewHadoopRDD > import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} > import org.apache.hadoop.hbase.mapreduce.TableInputFormat > import org.apache.hadoop.fs.Path > import org.apache.hadoop.hbase.HColumnDescriptor > import org.apache.hadoop.hbase.util.Bytes > import org.apache.hadoop.hbase.client.Put > import org.apache.hadoop.hbase.client.HTable > import scala.util.Random > import scala.math._ > import org.apache.spark.sql.functions._ > import org.apache.spark.rdd.NewHadoopRDD > import scala.collection.JavaConversions._ > import scala.collection.JavaConverters._ > import org.apache.hadoop.hbase.{HBaseConfiguration, HTableDescriptor} > import org.apache.hadoop.hbase.mapreduce.TableInputFormat > import java.nio.ByteBuffer > val tableName = "MARKETDATAHBASE" > val conf = HBaseConfiguration.create() > // Add local HBase conf > conf.set(TableInputFormat.INPUT_TABLE, tableName) > //create rdd > val hBaseRDD = sc.newAPIHadoopRDD(conf, classOf[TableInputFormat], > classOf[org.apache.hadoop.hbase.io.ImmutableBytesWritable], > classOf[org.apache.hadoop.hbase.client.Result]) > val rdd1 = hBaseRDD.map(tuple => tuple._2).map(result => (result.getRow, > result.getColumn("PRICE_INFO".getBytes(), "TICKER".getBytes()))).map(row > => { > ( > row._1.map(_.toChar).mkString, > row._2.asScala.reduceLeft { > (a, b) => if (a.getTimestamp > b.getTimestamp) a else b > }.getValue.map(_.toChar).mkString > ) > }) > case class columns (KEY: String, TICKER: String) > val dfTICKER = rdd1.toDF.map(p => columns(p(0).toString,p(1).toString)) > dfTICKER.show(5) > > > However, in Zeppelin it throws this error: > > > dfTICKER: org.apache.spark.sql.Dataset[columns] = [KEY: string, TICKER: > string] > org.apache.hadoop.hbase.client.RetriesExhaustedException: Failed after > attempts=36, exceptions: > Sat Oct 29 21:02:41 BST 2016, null, java.net.SocketTimeoutException: > callTimeout=60000, callDuration=68599: row 'MARKETDATAHBASE,,00000000000000' > on table 'hbase:meta' at region=hbase:meta,,1.1588230740, > hostname=rhes564,16201,1477246132044, seqNum=0 > > > Is this related to Hbase region server? > > > Thanks > > Dr Mich Talebzadeh > > > > LinkedIn * > https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw > <https://www.linkedin.com/profile/view?id=AAEAAAAWh2gBxianrbJd6zP6AcPCCdOABUrV8Pw>* > > > > http://talebzadehmich.wordpress.com > > > *Disclaimer:* Use it at your own risk. Any and all responsibility for any > loss, damage or destructionof data or any other property which may arise > from relying on this email's technical content is explicitly disclaimed.The > author will in no case be liable for any monetary damages arising from > suchloss, damage or destruction. > > > > >