Merci Stéphane, for the very interesting code and Heinz for the reference to the math behind the epidemy “curve”, or one of its models.
From: users <users-boun...@lists.scilab.org> On Behalf Of Stéphane Mottelet Sent: Monday, March 30, 2020 9:14 AM To: users@lists.scilab.org Subject: Re: [Scilab-users] Corona modelling Hello Heinz, Here is an interactive version (made for my children last week...) : // Confinement COVID-19 ! // Stephane MOTTELET, UTC // Tue Mar 24 08:55:03 CET 2020 // function dydt=sir(t, y, bet, gam, N) dydt=[-bet/N*y(1)*y(2) bet/N*y(1)*y(2)-gam*y(2) gam*y(2)]; endfunction function draw(bet, gam) t=0:1:360; N=6e7; if exists("gcbo") && is_handle_valid(gcbo) sb = gcbo; if sb.tag=="beta" bet=sb.value; gam=findobj("gamma").value else gam=sb.value; bet=findobj("beta").value end y=ode('stiff',[N-1;1;0],0,t,list(sir,bet,gam,N)); curves = findobj("curves"); curves.children(1).data(:,2)=y(3,:); curves.children(2).data(:,2)=y(2,:); curves.children(3).data(:,2)=y(1,:); else y=ode('stiff',[N-1;1;0],0,t,list(sir,bet,gam,N)); scf(0) clf plot(t,y) gce().tag="curves"; gce().children.thickness=2; legend("Susceptible","Infected","Recovered",-1) sb1 = uicontrol("style","slider",... "units","normalized",... "Position", [0.85,0.2,0.05,0.48],... "BackgroundColor", [1,1,1],... "Callback_Type",12,... "sliderstep",[1/1000,1/10],... "min",0.15,"max",0.3,"value",bet,... "Callback","draw","tag","beta"); uicontrol("style","text",... "string","$\beta$",... "units","normalized",... "Position", [0.85,0.125,0.05,0.08],... "BackgroundColor", [1,1,1],... "HorizontalAlignment","center"); sb1 = uicontrol("style","slider",... "units","normalized",... "Position", [0.90,0.2,0.05,0.48],... "BackgroundColor", [1,1,1],... "Callback_Type",12,... "sliderstep",[1/1000,1/10],... "min",0,"max",1/15,"value",gam,... "Callback","draw","tag","gamma"); uicontrol("style","text",... "string","$\gamma$",... "units","normalized",... "Position", [0.9,0.125,0.05,0.08],... "BackgroundColor", [1,1,1],... "HorizontalAlignment","center"); end end clf draw(0.3,1/15) Le 30/03/2020 à 02:14, Heinz Nabielek a écrit : Colleagues: is there an straightforward Scilab approach for solving the three coupled nonlinear differential equations of first order given by the Standard Model of Epidemics? S= number Susceptible: S'=-aSI I= number Infected: I'=aSI - bI R= number Recovered: R'=bI whereby 'a' is the transmission coefficient, 'b' the recovery factor (after Reed-Frost 1928). Initial values for S, I, R are available. Thank you Heinz _______________________________________________ users mailing list users@lists.scilab.org<mailto:users@lists.scilab.org> https://antispam.utc.fr/proxy/1/c3RlcGhhbmUubW90dGVsZXRAdXRjLmZy/lists.scilab.org/mailman/listinfo/users -- Stéphane Mottelet Ingénieur de recherche EA 4297 Transformations Intégrées de la Matière Renouvelable Département Génie des Procédés Industriels Sorbonne Universités - Université de Technologie de Compiègne CS 60319, 60203 Compiègne cedex Tel : +33(0)344234688 http://www.utc.fr/~mottelet
_______________________________________________ users mailing list users@lists.scilab.org http://lists.scilab.org/mailman/listinfo/users