Dear users and developers, Currently I am using two Tesla K40m cards for my computational work on quantum espresso (QE) suit http://www.quantum-espresso.org/. My GPU enabled QE code running very slower than normal version. When I am submitting my job on gpu it was showing some error that "A high-performance Open MPI point-to-point messaging module was unable to find any relevant network interfaces:
Module: OpenFabrics (openib) Host: qmel Another transport will be used instead, although this may result in lower performance. Is this the reason for diminishing GPU performance ?? I done installation by 1. ./configure --prefix=/home/xxxx/software/openmpi-2.0.4 --disable-openib-dynamic-sl --disable-openib-udcm --disable-openib-rdmacm" because we don't have any Infiband adapter HCA in server. 2. make all 3. make install Please correct me If I done any mistake in my installation or I have to use Infiband adaptor for using Openmpi?? I read lot of posts in openmpi forum to remove above error while submitting job, I added tag of "--mca btl ^openib" , still no use error vanished but performance was same. Current details of server are: Server: FUJITSU PRIMERGY RX2540 M2 CUDA version: 9.0 openmpi version: 2.0.4 with intel mkl libraries QE-gpu version (my application): 5.4.0 P.S: Extra information attached Thanks in advance Regards Phanikumar Research scholar IIT Kharagpur Kharagpur, westbengal India
################################################################################################################################################## SERVER architecture information (from "lscpu" command in terminal) ################################################################################################################################################## Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Byte Order: Little Endian CPU(s): 40 On-line CPU(s) list: 0-39 Thread(s) per core: 2 Core(s) per socket: 10 Socket(s): 2 NUMA node(s): 2 Vendor ID: GenuineIntel CPU family: 6 Model: 79 Model name: Intel(R) Xeon(R) CPU E5-2640 v4 @ 2.40GHz Stepping: 1 CPU MHz: 1200.000 BogoMIPS: 4788.53 Virtualization: VT-x L1d cache: 32K L1i cache: 32K L2 cache: 256K L3 cache: 25600K NUMA node0 CPU(s): 0-9,20-29 NUMA node1 CPU(s): 10-19,30-39 ################################################################################################################################################## After I run device quiry in CUDA_samples I got this information about my GPU accelerators ################################################################################################################################################## CUDA Device Query (Runtime API) version (CUDART static linking) Detected 2 CUDA Capable device(s) Device 0: "Tesla K40m" CUDA Driver Version / Runtime Version 9.0 / 9.0 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 11440 MBytes (11995578368 bytes) (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores GPU Max Clock rate: 745 MHz (0.75 GHz) Memory Clock rate: 3004 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Supports Cooperative Kernel Launch: No Supports MultiDevice Co-op Kernel Launch: No Device PCI Domain ID / Bus ID / location ID: 0 / 2 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > Device 1: "Tesla K40m" CUDA Driver Version / Runtime Version 9.0 / 9.0 CUDA Capability Major/Minor version number: 3.5 Total amount of global memory: 11440 MBytes (11995578368 bytes) (15) Multiprocessors, (192) CUDA Cores/MP: 2880 CUDA Cores GPU Max Clock rate: 745 MHz (0.75 GHz) Memory Clock rate: 3004 Mhz Memory Bus Width: 384-bit L2 Cache Size: 1572864 bytes Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096) Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers Total amount of constant memory: 65536 bytes Total amount of shared memory per block: 49152 bytes Total number of registers available per block: 65536 Warp size: 32 Maximum number of threads per multiprocessor: 2048 Maximum number of threads per block: 1024 Max dimension size of a thread block (x,y,z): (1024, 1024, 64) Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) Maximum memory pitch: 2147483647 bytes Texture alignment: 512 bytes Concurrent copy and kernel execution: Yes with 2 copy engine(s) Run time limit on kernels: No Integrated GPU sharing Host Memory: No Support host page-locked memory mapping: Yes Alignment requirement for Surfaces: Yes Device has ECC support: Enabled Device supports Unified Addressing (UVA): Yes Supports Cooperative Kernel Launch: No Supports MultiDevice Co-op Kernel Launch: No Device PCI Domain ID / Bus ID / location ID: 0 / 129 / 0 Compute Mode: < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) > > Peer access from Tesla K40m (GPU0) -> Tesla K40m (GPU1) : No > Peer access from Tesla K40m (GPU1) -> Tesla K40m (GPU0) : No deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 9.0, CUDA Runtime Version = 9.0, NumDevs = 2 Result = PASS ################################################################################################################################################## GPU performance after 'nvidia-smi' command in terminal ################################################################################################################################################## +-----------------------------------------------------------------------------+ | NVIDIA-SMI 384.90 Driver Version: 384.90 | |-------------------------------+----------------------+----------------------+ | GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. | |===============================+======================+======================| | 0 Tesla K40m Off | 00000000:02:00.0 Off | 0 | | N/A 42C P0 75W / 235W | 11381MiB / 11439MiB | 83% Default | +-------------------------------+----------------------+----------------------+ | 1 Tesla K40m Off | 00000000:81:00.0 Off | 0 | | N/A 46C P0 75W / 235W | 11380MiB / 11439MiB | 87% Default | +-------------------------------+----------------------+----------------------+ ################################################################################################################################################## TOP command if my server ################################################################################################################################################## PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 20019 xxxxx 20 0 0.158t 426080 152952 R 100.3 0.3 36:29.44 pw-gpu.x 20023 xxxxx 20 0 0.158t 422380 153328 R 100.0 0.3 36:29.42 pw-gpu.x 20025 xxxxx 20 0 0.158t 418256 153376 R 100.0 0.3 36:27.74 pw-gpu.x 20042 xxxxx 20 0 0.158t 416912 153104 R 100.0 0.3 36:24.63 pw-gpu.x 20050 xxxxx 20 0 0.158t 412564 153084 R 100.0 0.3 36:25.68 pw-gpu.x 20064 xxxxx 20 0 0.158t 408012 153100 R 100.0 0.3 36:25.54 pw-gpu.x 20098 xxxxx 20 0 0.158t 398404 153436 R 100.0 0.3 36:27.92 pw-gpu.x
_______________________________________________ users mailing list users@lists.open-mpi.org https://lists.open-mpi.org/mailman/listinfo/users