I used your test code to confirm it also fails on our trunk - it looks like someone got the reference count wrong when creating/destructing groups.
Afraid I'll have to defer to the authors of that code area... On Jan 19, 2013, at 1:27 AM, Siegmar Gross <siegmar.gr...@informatik.hs-fulda.de> wrote: > Hi > > I have installed openmpi-1.6.4rc2 and have the following problem. > > tyr strided_vector 110 ompi_info | grep "Open MPI:" > Open MPI: 1.6.4rc2r27861 > tyr strided_vector 111 mpicc -showme > gcc -I/usr/local/openmpi-1.6.4_64_gcc/include -fexceptions -pthread -m64 > -L/usr/local/openmpi-1.6.4_64_gcc/lib64 -lmpi -lm -lkstat -llgrp -lsocket > -lnsl > -lrt -lm > > > tyr strided_vector 112 mpiexec -np 4 data_type_4 > Process 2 of 4 running on tyr.informatik.hs-fulda.de > Process 0 of 4 running on tyr.informatik.hs-fulda.de > Process 3 of 4 running on tyr.informatik.hs-fulda.de > Process 1 of 4 running on tyr.informatik.hs-fulda.de > > original matrix: > > 1 2 3 4 5 6 7 8 9 10 > 11 12 13 14 15 16 17 18 19 20 > 21 22 23 24 25 26 27 28 29 30 > 31 32 33 34 35 36 37 38 39 40 > 41 42 43 44 45 46 47 48 49 50 > 51 52 53 54 55 56 57 58 59 60 > > result matrix: > elements are sqared in columns: > 0 1 2 6 7 > elements are multiplied with 2 in columns: > 3 4 5 8 9 > > 1 4 9 8 10 12 49 64 18 20 > 121 144 169 28 30 32 289 324 38 40 > 441 484 529 48 50 52 729 784 58 60 > 961 1024 1089 68 70 72 1369 1444 78 80 > 1681 1764 1849 88 90 92 2209 2304 98 100 > 2601 2704 2809 108 110 112 3249 3364 118 120 > > Assertion failed: OPAL_OBJ_MAGIC_ID == ((opal_object_t *) > (comm->c_remote_group) > )->obj_magic_id, file > ../../openmpi-1.6.4rc2r27861/ompi/communicator/comm_init.c > , line 412 > [tyr:18578] *** Process received signal *** > [tyr:18578] Signal: Abort (6) > [tyr:18578] Signal code: (-1) > Assertion failed: OPAL_OBJ_MAGIC_ID == ((opal_object_t *) > (comm->c_remote_group) > )->obj_magic_id, file > ../../openmpi-1.6.4rc2r27861/ompi/communicator/comm_init.c > , line 412 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:opal_backtr > ace_print+0x20 > [tyr:18580] *** Process received signal *** > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0x2c1bc4 > [tyr:18580] Signal: Abort (6) > [tyr:18580] Signal code: (-1) > /lib/sparcv9/libc.so.1:0xd88a4 > /lib/sparcv9/libc.so.1:0xcc418 > /lib/sparcv9/libc.so.1:0xcc624 > /lib/sparcv9/libc.so.1:__lwp_kill+0x8 [ Signal 6 (ABRT)] > /lib/sparcv9/libc.so.1:abort+0xd0 > /lib/sparcv9/libc.so.1:_assert+0x74 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0xa4c58 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0xa2430 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:ompi_comm_f > inalize+0x168 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:ompi_mpi_fi > nalize+0xa60 > /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:MPI_Finaliz > e+0x90 > /home/fd1026/SunOS/sparc/bin/data_type_4:main+0x588 > /home/fd1026/SunOS/sparc/bin/data_type_4:_start+0x7c > [tyr:18578] *** End of error message *** > ... > > > > Everything works fine with LAM-MPI (even in a heterogeneous environment > with little-endian and big-endian machines) so that it is probably an > error in Open MPI (but you never know). > > > tyr strided_vector 125 mpicc -showme > gcc -I/usr/local/lam-6.5.9_64_gcc/include -L/usr/local/lam-6.5.9_64_gcc/lib > -llamf77mpi -lmpi -llam -lsocket -lnsl > tyr strided_vector 126 lamboot -v hosts.lam-mpi > > LAM 6.5.9/MPI 2 C++ - Indiana University > > Executing hboot on n0 (tyr.informatik.hs-fulda.de - 2 CPUs)... > Executing hboot on n1 (sunpc1.informatik.hs-fulda.de - 4 CPUs)... > topology done > > tyr strided_vector 127 mpirun -v app_data_type_4.lam-mpi > 22894 data_type_4 running on local > 22895 data_type_4 running on n0 (o) > 21998 data_type_4 running on n1 > 22896 data_type_4 running on n0 (o) > Process 1 of 4 running on tyr.informatik.hs-fulda.de > Process 3 of 4 running on tyr.informatik.hs-fulda.de > Process 2 of 4 running on sunpc1 > Process 0 of 4 running on tyr.informatik.hs-fulda.de > > original matrix: > > 1 2 3 4 5 6 7 8 9 10 > 11 12 13 14 15 16 17 18 19 20 > 21 22 23 24 25 26 27 28 29 30 > 31 32 33 34 35 36 37 38 39 40 > 41 42 43 44 45 46 47 48 49 50 > 51 52 53 54 55 56 57 58 59 60 > > result matrix: > elements are sqared in columns: > 0 1 2 6 7 > elements are multiplied with 2 in columns: > 3 4 5 8 9 > > 1 4 9 8 10 12 49 64 18 20 > 121 144 169 28 30 32 289 324 38 40 > 441 484 529 48 50 52 729 784 58 60 > 961 1024 1089 68 70 72 1369 1444 78 80 > 1681 1764 1849 88 90 92 2209 2304 98 100 > 2601 2704 2809 108 110 112 3249 3364 118 120 > > tyr strided_vector 128 lamhalt > > LAM 6.5.9/MPI 2 C++ - Indiana University > > > > I would be grateful, if somebody could fix the problem. Thank you > very much for any help in advance. > > > Kind regards > > Siegmar > /* The program demonstrates how to set up and use a strided vector. > * The process with rank 0 creates a matrix. The columns of the > * matrix will then be distributed with a collective communication > * operation to all processes. Each process performs an operation on > * all column elements. Afterwards the results are collected in the > * source matrix overwriting the original column elements. > * > * The program uses between one and n processes to change the values > * of the column elements if the matrix has n columns. If you start > * the program with one process it has to work on all n columns alone > * and if you start it with n processes each process modifies the > * values of one column. Every process must know how many columns it > * has to modify so that it can allocate enough buffer space for its > * column block. Therefore the process with rank 0 computes the > * numbers of columns for each process in the array "num_columns" and > * distributes this array with MPI_Broadcast to all processes. Each > * process can now allocate memory for its column block. There is > * still one task to do before the columns of the matrix can be > * distributed with MPI_Scatterv: The size of every column block and > * the offset of every column block must be computed und stored in > * the arrays "sr_counts" and "sr_disps". > * > * An MPI data type is defined by its size, its contents, and its > * extent. When multiple elements of the same size are used in a > * contiguous manner (e.g. in a "scatter" operation or an operation > * with "count" greater than one) the extent is used to compute where > * the next element will start. The extent for a derived data type is > * as big as the size of the derived data type so that the first > * elements of the second structure will start after the last element > * of the first structure, i.e., you have to "resize" the new data > * type if you want to send it multiple times (count > 1) or to > * scatter/gather it to many processes. Restrict the extent of the > * derived data type for a strided vector in such a way that it looks > * like just one element if it is used with "count > 1" or in a > * scatter/gather operation. > * > * This version constructs a new column type (strided vector) with > * "MPI_Type_vector" and uses collective communication. The new > * data type knows the number of elements within one column and the > * spacing between two column elements. The program uses at most > * n processes if the matrix has n columns, i.e. depending on the > * number of processes each process receives between 1 and n columns. > * You can execute this program with an arbitrary number of processes > * because it creates its own group with "num_worker" (<= n) processes > * to perform the work if the matrix has n columns and the basic group > * contains too many processes. > * > * > * Compiling: > * Store executable(s) into local directory. > * mpicc -o <program name> <source code file name> > * > * Store executable(s) into predefined directories. > * make > * > * Make program(s) automatically on all specified hosts. You must > * edit the file "make_compile" and specify your host names before > * you execute it. > * make_compile > * > * Running: > * LAM-MPI: > * mpiexec -boot -np <number of processes> <program name> > * or > * mpiexec -boot \ > * -host <hostname> -np <number of processes> <program name> : \ > * -host <hostname> -np <number of processes> <program name> > * or > * mpiexec -boot [-v] -configfile <application file> > * or > * lamboot [-v] [<host file>] > * mpiexec -np <number of processes> <program name> > * or > * mpiexec [-v] -configfile <application file> > * lamhalt > * > * OpenMPI: > * "host1", "host2", and so on can all have the same name, > * if you want to start a virtual computer with some virtual > * cpu's on the local host. The name "localhost" is allowed > * as well. > * > * mpiexec -np <number of processes> <program name> > * or > * mpiexec --host <host1,host2,...> \ > * -np <number of processes> <program name> > * or > * mpiexec -hostfile <hostfile name> \ > * -np <number of processes> <program name> > * or > * mpiexec -app <application file> > * > * Cleaning: > * local computer: > * rm <program name> > * or > * make clean_all > * on all specified computers (you must edit the file "make_clean_all" > * and specify your host names before you execute it. > * make_clean_all > * > * > * File: data_type_4.c Author: S. Gross > * Date: 30.08.2012 > * > */ > > #include <stdio.h> > #include <stdlib.h> > #include "mpi.h" > > #define P 6 /* # of rows > */ > #define Q 10 /* # of columns */ > #define FACTOR 2 /* multiplicator for col. elem. > */ > #define DEF_NUM_WORKER Q /* # of workers, must be <= Q > */ > > /* define macro to test the result of a "malloc" operation */ > #define TestEqualsNULL(val) \ > if (val == NULL) \ > { \ > fprintf (stderr, "file: %s line %d: Couldn't allocate memory.\n", \ > __FILE__, __LINE__); \ > exit (EXIT_FAILURE); \ > } > > /* define macro to determine the minimum of two values > */ > #define MIN(a,b) ((a) < (b) ? (a) : (b)) > > > static void print_matrix (int p, int q, double **mat); > > > int main (int argc, char *argv[]) > { > int ntasks, /* number of parallel tasks */ > mytid, /* my task id > */ > namelen, /* length of processor name */ > i, j, /* loop variables */ > *num_columns, /* # of columns in column block */ > *sr_counts, /* send/receive counts */ > *sr_disps, /* send/receive displacements */ > tmp, tmp1; /* temporary values */ > double matrix[P][Q], > **col_block; /* column block of matrix */ > char processor_name[MPI_MAX_PROCESSOR_NAME]; > MPI_Datatype column_t, /* column type (strided vector) */ > col_block_t, > tmp_column_t; /* needed to resize the extent */ > MPI_Group group_comm_world, /* processes in "basic group" */ > group_worker, /* processes in new groups */ > group_other; > MPI_Comm COMM_WORKER, /* communicators for new groups */ > COMM_OTHER; > int num_worker, /* # of worker in "group_worker"*/ > *group_w_mem, /* array of worker members */ > group_w_ntasks, /* # of tasks in "group_worker" */ > group_o_ntasks, /* # of tasks in "group_other" */ > group_w_mytid, /* my task id in "group_worker" */ > group_o_mytid, /* my task id in "group_other" */ > *universe_size_ptr, /* ptr to # of "virtual cpu's" */ > universe_size_flag; /* true if available */ > > MPI_Init (&argc, &argv); > MPI_Comm_rank (MPI_COMM_WORLD, &mytid); > MPI_Comm_size (MPI_COMM_WORLD, &ntasks); > /* Determine the correct number of processes for this program. If > * there are more than Q processes (i.e., more processes than > * columns) available, we split the "basic group" into two groups. > * This program uses a group "group_worker" to do the real work > * and a group "group_other" for the remaining processes of the > * "basic group". The latter have nothing to do and can terminate > * immediately. If there are less than or equal to Q processes > * available all processes belong to group "group_worker" and group > * "group_other" is empty. At first we find out which processes > * belong to the "basic group". > */ > MPI_Comm_group (MPI_COMM_WORLD, &group_comm_world); > if (ntasks > Q) > { > /* There are too many processes, so that we must build a new group > * with "num_worker" processes. "num_worker" will be the minimum of > * DEF_NUM_WORKER and the "universe size" if it is supported by the > * MPI implementation. At first we must check if DEF_NUM_WORKER has > * a suitable value. > */ > if (DEF_NUM_WORKER > Q) > { > if (mytid == 0) > { > fprintf (stderr, "\nError:\tInternal program error.\n" > "\tConstant DEF_NUM_WORKER has value %d but must be\n" > "\tlower than or equal to %d. Please change source\n" > "\tcode and compile the program again.\n\n", > DEF_NUM_WORKER, Q); > } > MPI_Group_free (&group_comm_world); > MPI_Finalize (); > exit (EXIT_FAILURE); > } > /* determine the universe size, set "num_worker" in an > * appropriate way, and allocate memory for the array containing > * the ranks of the members of the new group > */ > MPI_Comm_get_attr (MPI_COMM_WORLD, MPI_UNIVERSE_SIZE, > &universe_size_ptr, &universe_size_flag); > if ((universe_size_flag != 0) && (*universe_size_ptr > 0)) > { > num_worker = MIN (DEF_NUM_WORKER, *universe_size_ptr); > } > else > { > num_worker = DEF_NUM_WORKER; > } > group_w_mem = (int *) malloc (num_worker * sizeof (int)); > TestEqualsNULL (group_w_mem); /* test if memory was available */ > if (mytid == 0) > { > printf ("\nYou have started %d processes but I need at most " > "%d processes.\n" > "The universe contains %d \"virtual cpu's\" (\"0\" means " > "not supported).\n" > "I build a new worker group with %d processes. The " > "processes with\n" > "the following ranks in the basic group belong to " > "the new group:\n ", > ntasks, Q, *universe_size_ptr, num_worker); > } > for (i = 0; i < num_worker; ++i) > { > /* fetch some ranks from the basic group for the new worker > * group, e.g. the last num_worker ranks to demonstrate that > * a process may have different ranks in different groups > */ > group_w_mem[i] = (ntasks - num_worker) + i; > if (mytid == 0) > { > printf ("%d ", group_w_mem[i]); > } > } > if (mytid == 0) > { > printf ("\n\n"); > } > /* Create group "group_worker" */ > MPI_Group_incl (group_comm_world, num_worker, group_w_mem, > &group_worker); > free (group_w_mem); > } > else > { > /* there are at most as many processes as columns in our matrix, > * i.e., we can use the "basic group" > */ > group_worker = group_comm_world; > } > /* Create group "group_other" which demonstrates only how to use > * another group operation and which has nothing to do in this > * program. > */ > MPI_Group_difference (group_comm_world, group_worker, > &group_other); > MPI_Group_free (&group_comm_world); > /* Create communicators for both groups. The communicator is only > * defined for all processes of the group and it is undefined > * (MPI_COMM_NULL) for all other processes. > */ > MPI_Comm_create (MPI_COMM_WORLD, group_worker, &COMM_WORKER); > MPI_Comm_create (MPI_COMM_WORLD, group_other, &COMM_OTHER); > > > /* ========================================================= > * ====== ====== > * ====== Supply work for all different groups. ====== > * ====== ====== > * ====== ====== > * ====== At first you must find out if a process ====== > * ====== belongs to a special group. You can use ====== > * ====== MPI_Group_rank for this purpose. It returns ====== > * ====== the rank of the calling process in the ====== > * ====== specified group or MPI_UNDEFINED if the ====== > * ====== calling process is not a member of the ====== > * ====== group. ====== > * ====== ====== > * ========================================================= > */ > > > /* ========================================================= > * ====== This is the group "group_worker". ====== > * ========================================================= > */ > MPI_Group_rank (group_worker, &group_w_mytid); > if (group_w_mytid != MPI_UNDEFINED) > { > MPI_Comm_size (COMM_WORKER, &group_w_ntasks); /* # of processes */ > /* Now let's start with the real work */ > MPI_Get_processor_name (processor_name, &namelen); > /* With the next statement every process executing this code will > * print one line on the display. It may happen that the lines will > * get mixed up because the display is a critical section. In general > * only one process (mostly the process with rank 0) will print on > * the display and all other processes will send their messages to > * this process. Nevertheless for debugging purposes (or to > * demonstrate that it is possible) it may be useful if every > * process prints itself. > */ > fprintf (stdout, "Process %d of %d running on %s\n", > group_w_mytid, group_w_ntasks, processor_name); > fflush (stdout); > MPI_Barrier (COMM_WORKER); /* wait for all other processes */ > > /* Build the new type for a strided vector and resize the extent > * of the new datatype in such a way that the extent of the whole > * column looks like just one element so that the next column > * starts in matrix[0][i] in MPI_Scatterv/MPI_Gatherv. > */ > MPI_Type_vector (P, 1, Q, MPI_DOUBLE, &tmp_column_t); > MPI_Type_create_resized (tmp_column_t, 0, sizeof (double), > &column_t); > MPI_Type_commit (&column_t); > MPI_Type_free (&tmp_column_t); > if (group_w_mytid == 0) > { > tmp = 1; > for (i = 0; i < P; ++i) /* initialize matrix */ > { > for (j = 0; j < Q; ++j) > { > matrix[i][j] = tmp++; > } > } > printf ("\n\noriginal matrix:\n\n"); > print_matrix (P, Q, (double **) matrix); > } > /* allocate memory for array containing the number of columns of a > * column block for each process > */ > num_columns = (int *) malloc (group_w_ntasks * sizeof (int)); > TestEqualsNULL (num_columns); /* test if memory was available */ > > /* do an unnecessary initialization to make the GNU compiler happy > * so that you won't get a warning about the use of a possibly > * uninitialized variable > */ > sr_counts = NULL; > sr_disps = NULL; > if (group_w_mytid == 0) > { > /* allocate memory for arrays containing the size and > * displacement of each column block > */ > sr_counts = (int *) malloc (group_w_ntasks * sizeof (int)); > TestEqualsNULL (sr_counts); > sr_disps = (int *) malloc (group_w_ntasks * sizeof (int)); > TestEqualsNULL (sr_disps); > /* compute number of columns in column block for each process */ > tmp = Q / group_w_ntasks; > for (i = 0; i < group_w_ntasks; ++i) > { > num_columns[i] = tmp; /* number of columns */ > } > for (i = 0; i < (Q % group_w_ntasks); ++i) /* adjust size */ > { > num_columns[i]++; > } > for (i = 0; i < group_w_ntasks; ++i) > { > /* nothing to do because "column_t" contains already all > * elements of a column, i.e., the "size" is equal to the > * number of columns in the block > */ > sr_counts[i] = num_columns[i]; /* "size" of column-block */ > } > sr_disps[0] = 0; /* start of i-th column-block */ > for (i = 1; i < group_w_ntasks; ++i) > { > sr_disps[i] = sr_disps[i - 1] + sr_counts[i - 1]; > } > } > /* inform all processes about their column block sizes */ > MPI_Bcast (num_columns, group_w_ntasks, MPI_INT, 0, COMM_WORKER); > /* allocate memory for a column block and define a new derived > * data type for the column block. This data type is possibly > * different for different processes if the number of processes > * isn't a factor of the row size of the original matrix. Don't > * forget to resize the extent of the new data type in such a > * way that the extent of the whole column looks like just one > * element so that the next column starts in col_block[0][i] > * in MPI_Scatterv/MPI_Gatherv. > */ > col_block = (double **) malloc (P * num_columns[group_w_mytid] * > sizeof (double)); > TestEqualsNULL (col_block); > MPI_Type_vector (P, 1, num_columns[group_w_mytid], MPI_DOUBLE, > &tmp_column_t); > MPI_Type_create_resized (tmp_column_t, 0, sizeof (double), > &col_block_t); > MPI_Type_commit (&col_block_t); > MPI_Type_free (&tmp_column_t); > /* send column block i of "matrix" to process i */ > MPI_Scatterv (matrix, sr_counts, sr_disps, column_t, > col_block, num_columns[group_w_mytid], > col_block_t, 0, COMM_WORKER); > /* Modify column elements. The compiler doesn't know the structure > * of the column block matrix so that you have to do the index > * calculations for mat[i][j] yourself. In C a matrix is stored > * row-by-row so that the i-th row starts at location "i * q" if > * the matrix has "q" columns. Therefore the address of mat[i][j] > * can be expressed as "(double *) mat + i * q + j" and mat[i][j] > * itself as "*((double *) mat + i * q + j)". > */ > for (i = 0; i < P; ++i) > { > for (j = 0; j < num_columns[group_w_mytid]; ++j) > { > if ((group_w_mytid % 2) == 0) > { > /* col_block[i][j] *= col_block[i][j] */ > > *((double *) col_block + i * num_columns[group_w_mytid] + j) *= > *((double *) col_block + i * num_columns[group_w_mytid] + j); > } > else > { > /* col_block[i][j] *= FACTOR */ > > *((double *) col_block + i * num_columns[group_w_mytid] + j) *= > FACTOR; > } > } > } > /* receive column-block i of "matrix" from process i */ > MPI_Gatherv (col_block, num_columns[group_w_mytid], col_block_t, > matrix, sr_counts, sr_disps, column_t, > 0, COMM_WORKER); > if (group_w_mytid == 0) > { > printf ("\n\nresult matrix:\n" > " elements are sqared in columns:\n "); > tmp = 0; > tmp1 = 0; > for (i = 0; i < group_w_ntasks; ++i) > { > tmp1 = tmp1 + num_columns[i]; > if ((i % 2) == 0) > { > for (j = tmp; j < tmp1; ++j) > { > printf ("%4d", j); > } > } > tmp = tmp1; > } > printf ("\n elements are multiplied with %d in columns:\n ", > FACTOR); > tmp = 0; > tmp1 = 0; > for (i = 0; i < group_w_ntasks; ++i) > { > tmp1 = tmp1 + num_columns[i]; > if ((i % 2) != 0) > { > for (j = tmp; j < tmp1; ++j) > { > printf ("%4d", j); > } > } > tmp = tmp1; > } > printf ("\n\n\n"); > print_matrix (P, Q, (double **) matrix); > free (sr_counts); > free (sr_disps); > } > free (num_columns); > free (col_block); > MPI_Type_free (&column_t); > MPI_Type_free (&col_block_t); > MPI_Comm_free (&COMM_WORKER); > } > > > /* ========================================================= > * ====== This is the group "group_other". ====== > * ========================================================= > */ > MPI_Group_rank (group_other, &group_o_mytid); > if (group_o_mytid != MPI_UNDEFINED) > { > /* Nothing to do (only to demonstrate how to divide work for > * different groups). > */ > MPI_Comm_size (COMM_OTHER, &group_o_ntasks); > if (group_o_mytid == 0) > { > if (group_o_ntasks == 1) > { > printf ("\nGroup \"group_other\" contains %d process " > "which has\n" > "nothing to do.\n\n", group_o_ntasks); > } > else > { > printf ("\nGroup \"group_other\" contains %d processes " > "which have\n" > "nothing to do.\n\n", group_o_ntasks); > } > } > MPI_Comm_free (&COMM_OTHER); > } > > > /* ========================================================= > * ====== all groups will reach this point ====== > * ========================================================= > */ > MPI_Group_free (&group_worker); > MPI_Group_free (&group_other); > MPI_Finalize (); > return EXIT_SUCCESS; > } > > > /* Print the values of an arbitrary 2D-matrix of "double" values. The > * compiler doesn't know the structure of the matrix so that you have > * to do the index calculations for mat[i][j] yourself. In C a matrix > * is stored row-by-row so that the i-th row starts at location "i * q" > * if the matrix has "q" columns. Therefore the address of mat[i][j] > * can be expressed as "(double *) mat + i * q + j" and mat[i][j] > * itself as "*((double *) mat + i * q + j)". > * > * input parameters: p number of rows > * q number of columns > * mat 2D-matrix of "double" values > * output parameters: none > * return value: none > * side effects: none > * > */ > void print_matrix (int p, int q, double **mat) > { > int i, j; /* loop variables */ > > for (i = 0; i < p; ++i) > { > for (j = 0; j < q; ++j) > { > printf ("%6g", *((double *) mat + i * q + j)); > } > printf ("\n"); > } > printf ("\n"); > } > _______________________________________________ > users mailing list > us...@open-mpi.org > http://www.open-mpi.org/mailman/listinfo.cgi/users