I used your test code to confirm it also fails on our trunk - it looks like 
someone got the reference count wrong when creating/destructing groups.

Afraid I'll have to defer to the authors of that code area...


On Jan 19, 2013, at 1:27 AM, Siegmar Gross 
<siegmar.gr...@informatik.hs-fulda.de> wrote:

> Hi
> 
> I have installed openmpi-1.6.4rc2 and have the following problem.
> 
> tyr strided_vector 110 ompi_info | grep "Open MPI:"
>                Open MPI: 1.6.4rc2r27861
> tyr strided_vector 111 mpicc -showme
> gcc -I/usr/local/openmpi-1.6.4_64_gcc/include -fexceptions -pthread -m64 
> -L/usr/local/openmpi-1.6.4_64_gcc/lib64 -lmpi -lm -lkstat -llgrp -lsocket 
> -lnsl 
> -lrt -lm
> 
> 
> tyr strided_vector 112 mpiexec -np 4 data_type_4
> Process 2 of 4 running on tyr.informatik.hs-fulda.de
> Process 0 of 4 running on tyr.informatik.hs-fulda.de
> Process 3 of 4 running on tyr.informatik.hs-fulda.de
> Process 1 of 4 running on tyr.informatik.hs-fulda.de
> 
> original matrix:
> 
>     1     2     3     4     5     6     7     8     9    10
>    11    12    13    14    15    16    17    18    19    20
>    21    22    23    24    25    26    27    28    29    30
>    31    32    33    34    35    36    37    38    39    40
>    41    42    43    44    45    46    47    48    49    50
>    51    52    53    54    55    56    57    58    59    60
> 
> result matrix:
>  elements are sqared in columns:
>     0   1   2   6   7
>  elements are multiplied with 2 in columns:
>     3   4   5   8   9
> 
>     1     4     9     8    10    12    49    64    18    20
>   121   144   169    28    30    32   289   324    38    40
>   441   484   529    48    50    52   729   784    58    60
>   961  1024  1089    68    70    72  1369  1444    78    80
>  1681  1764  1849    88    90    92  2209  2304    98   100
>  2601  2704  2809   108   110   112  3249  3364   118   120
> 
> Assertion failed: OPAL_OBJ_MAGIC_ID == ((opal_object_t *) 
> (comm->c_remote_group)
> )->obj_magic_id, file 
> ../../openmpi-1.6.4rc2r27861/ompi/communicator/comm_init.c
> , line 412
> [tyr:18578] *** Process received signal ***
> [tyr:18578] Signal: Abort (6)
> [tyr:18578] Signal code:  (-1)
> Assertion failed: OPAL_OBJ_MAGIC_ID == ((opal_object_t *) 
> (comm->c_remote_group)
> )->obj_magic_id, file 
> ../../openmpi-1.6.4rc2r27861/ompi/communicator/comm_init.c
> , line 412
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:opal_backtr
> ace_print+0x20
> [tyr:18580] *** Process received signal ***
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0x2c1bc4
> [tyr:18580] Signal: Abort (6)
> [tyr:18580] Signal code:  (-1)
> /lib/sparcv9/libc.so.1:0xd88a4
> /lib/sparcv9/libc.so.1:0xcc418
> /lib/sparcv9/libc.so.1:0xcc624
> /lib/sparcv9/libc.so.1:__lwp_kill+0x8 [ Signal 6 (ABRT)]
> /lib/sparcv9/libc.so.1:abort+0xd0
> /lib/sparcv9/libc.so.1:_assert+0x74
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0xa4c58
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:0xa2430
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:ompi_comm_f
> inalize+0x168
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:ompi_mpi_fi
> nalize+0xa60
> /export2/prog/SunOS_sparc/openmpi-1.6.4_64_gcc/lib64/libmpi.so.1.0.7:MPI_Finaliz
> e+0x90
> /home/fd1026/SunOS/sparc/bin/data_type_4:main+0x588
> /home/fd1026/SunOS/sparc/bin/data_type_4:_start+0x7c
> [tyr:18578] *** End of error message ***
> ...
> 
> 
> 
> Everything works fine with LAM-MPI (even in a heterogeneous environment
> with little-endian and big-endian machines) so that it is probably an
> error in Open MPI (but you never know).
> 
> 
> tyr strided_vector 125 mpicc -showme
> gcc -I/usr/local/lam-6.5.9_64_gcc/include -L/usr/local/lam-6.5.9_64_gcc/lib 
> -llamf77mpi -lmpi -llam -lsocket -lnsl 
> tyr strided_vector 126 lamboot -v hosts.lam-mpi
> 
> LAM 6.5.9/MPI 2 C++ - Indiana University
> 
> Executing hboot on n0 (tyr.informatik.hs-fulda.de - 2 CPUs)...
> Executing hboot on n1 (sunpc1.informatik.hs-fulda.de - 4 CPUs)...
> topology done      
> 
> tyr strided_vector 127 mpirun -v app_data_type_4.lam-mpi
> 22894 data_type_4 running on local
> 22895 data_type_4 running on n0 (o)
> 21998 data_type_4 running on n1
> 22896 data_type_4 running on n0 (o)
> Process 1 of 4 running on tyr.informatik.hs-fulda.de
> Process 3 of 4 running on tyr.informatik.hs-fulda.de
> Process 2 of 4 running on sunpc1
> Process 0 of 4 running on tyr.informatik.hs-fulda.de
> 
> original matrix:
> 
>     1     2     3     4     5     6     7     8     9    10
>    11    12    13    14    15    16    17    18    19    20
>    21    22    23    24    25    26    27    28    29    30
>    31    32    33    34    35    36    37    38    39    40
>    41    42    43    44    45    46    47    48    49    50
>    51    52    53    54    55    56    57    58    59    60
> 
> result matrix:
>  elements are sqared in columns:
>     0   1   2   6   7
>  elements are multiplied with 2 in columns:
>     3   4   5   8   9
> 
>     1     4     9     8    10    12    49    64    18    20
>   121   144   169    28    30    32   289   324    38    40
>   441   484   529    48    50    52   729   784    58    60
>   961  1024  1089    68    70    72  1369  1444    78    80
>  1681  1764  1849    88    90    92  2209  2304    98   100
>  2601  2704  2809   108   110   112  3249  3364   118   120
> 
> tyr strided_vector 128 lamhalt
> 
> LAM 6.5.9/MPI 2 C++ - Indiana University
> 
> 
> 
> I would be grateful, if somebody could fix the problem. Thank you
> very much for any help in advance.
> 
> 
> Kind regards
> 
> Siegmar
> /* The program demonstrates how to set up and use a strided vector.
> * The process with rank 0 creates a matrix. The columns of the
> * matrix will then be distributed with a collective communication
> * operation to all processes. Each process performs an operation on
> * all column elements. Afterwards the results are collected in the
> * source matrix overwriting the original column elements.
> *
> * The program uses between one and n processes to change the values
> * of the column elements if the matrix has n columns. If you start
> * the program with one process it has to work on all n columns alone
> * and if you start it with n processes each process modifies the
> * values of one column. Every process must know how many columns it
> * has to modify so that it can allocate enough buffer space for its
> * column block. Therefore the process with rank 0 computes the
> * numbers of columns for each process in the array "num_columns" and
> * distributes this array with MPI_Broadcast to all processes. Each
> * process can now allocate memory for its column block. There is
> * still one task to do before the columns of the matrix can be
> * distributed with MPI_Scatterv: The size of every column block and
> * the offset of every column block must be computed und stored in
> * the arrays "sr_counts" and "sr_disps".
> *
> * An MPI data type is defined by its size, its contents, and its
> * extent. When multiple elements of the same size are used in a
> * contiguous manner (e.g. in a "scatter" operation or an operation
> * with "count" greater than one) the extent is used to compute where
> * the next element will start. The extent for a derived data type is
> * as big as the size of the derived data type so that the first
> * elements of the second structure will start after the last element
> * of the first structure, i.e., you have to "resize" the new data
> * type if you want to send it multiple times (count > 1) or to
> * scatter/gather it to many processes. Restrict the extent of the
> * derived data type for a strided vector in such a way that it looks
> * like just one element if it is used with "count > 1" or in a
> * scatter/gather operation.
> *
> * This version constructs a new column type (strided vector) with
> * "MPI_Type_vector" and uses collective communication. The new
> * data type knows the number of elements within one column and the
> * spacing between two column elements. The program uses at most
> * n processes if the matrix has n columns, i.e. depending on the
> * number of processes each process receives between 1 and n columns.
> * You can execute this program with an arbitrary number of processes
> * because it creates its own group with "num_worker" (<= n) processes
> * to perform the work if the matrix has n columns and the basic group
> * contains too many processes.
> *
> *
> * Compiling:
> *   Store executable(s) into local directory.
> *     mpicc -o <program name> <source code file name>
> *
> *   Store executable(s) into predefined directories.
> *     make
> *
> *   Make program(s) automatically on all specified hosts. You must
> *   edit the file "make_compile" and specify your host names before
> *   you execute it.
> *     make_compile
> *
> * Running:
> *   LAM-MPI:
> *     mpiexec -boot -np <number of processes> <program name>
> *     or
> *     mpiexec -boot \
> *      -host <hostname> -np <number of processes> <program name> : \
> *      -host <hostname> -np <number of processes> <program name>
> *     or
> *     mpiexec -boot [-v] -configfile <application file>
> *     or
> *     lamboot [-v] [<host file>]
> *       mpiexec -np <number of processes> <program name>
> *      or
> *      mpiexec [-v] -configfile <application file>
> *     lamhalt
> *
> *   OpenMPI:
> *     "host1", "host2", and so on can all have the same name,
> *     if you want to start a virtual computer with some virtual
> *     cpu's on the local host. The name "localhost" is allowed
> *     as well.
> *
> *     mpiexec -np <number of processes> <program name>
> *     or
> *     mpiexec --host <host1,host2,...> \
> *      -np <number of processes> <program name>
> *     or
> *     mpiexec -hostfile <hostfile name> \
> *      -np <number of processes> <program name>
> *     or
> *     mpiexec -app <application file>
> *
> * Cleaning:
> *   local computer:
> *     rm <program name>
> *     or
> *     make clean_all
> *   on all specified computers (you must edit the file "make_clean_all"
> *   and specify your host names before you execute it.
> *     make_clean_all
> *
> *
> * File: data_type_4.c                 Author: S. Gross
> * Date: 30.08.2012
> *
> */
> 
> #include <stdio.h>
> #include <stdlib.h>
> #include "mpi.h"
> 
> #define       P               6               /* # of rows                    
> */
> #define Q             10              /* # of columns                 */
> #define FACTOR                2               /* multiplicator for col. elem. 
> */
> #define DEF_NUM_WORKER        Q               /* # of workers, must be <= Q   
> */
> 
> /* define macro to test the result of a "malloc" operation            */
> #define TestEqualsNULL(val)  \
>  if (val == NULL) \
>  { \
>    fprintf (stderr, "file: %s  line %d: Couldn't allocate memory.\n", \
>            __FILE__, __LINE__); \
>    exit (EXIT_FAILURE); \
>  }
> 
> /* define macro to determine the minimum of two values                        
> */
> #define MIN(a,b)      ((a) < (b) ? (a) : (b))
> 
> 
> static void print_matrix (int p, int q, double **mat);
> 
> 
> int main (int argc, char *argv[])
> {
>  int    ntasks,                       /* number of parallel tasks     */
>         mytid,                                /* my task id                   
> */
>         namelen,                      /* length of processor name     */
>         i, j,                         /* loop variables               */
>        *num_columns,                  /* # of columns in column block */
>        *sr_counts,                    /* send/receive counts          */
>        *sr_disps,                     /* send/receive displacements   */
>        tmp, tmp1;                     /* temporary values             */
>  double matrix[P][Q],
>        **col_block;                   /* column block of matrix       */
>  char   processor_name[MPI_MAX_PROCESSOR_NAME];
>  MPI_Datatype column_t,               /* column type (strided vector) */
>               col_block_t,
>               tmp_column_t;           /* needed to resize the extent  */
>  MPI_Group    group_comm_world,       /* processes in "basic group"   */
>               group_worker,           /* processes in new groups      */
>               group_other;
>  MPI_Comm     COMM_WORKER,            /* communicators for new groups */
>               COMM_OTHER;
>  int          num_worker,             /* # of worker in "group_worker"*/
>               *group_w_mem,           /* array of worker members      */
>               group_w_ntasks,         /* # of tasks in "group_worker" */
>               group_o_ntasks,         /* # of tasks in "group_other"  */
>               group_w_mytid,          /* my task id in "group_worker" */
>               group_o_mytid,          /* my task id in "group_other"  */
>               *universe_size_ptr,     /* ptr to # of "virtual cpu's"  */
>               universe_size_flag;     /* true if available            */
> 
>  MPI_Init (&argc, &argv);
>  MPI_Comm_rank (MPI_COMM_WORLD, &mytid);
>  MPI_Comm_size (MPI_COMM_WORLD, &ntasks);
>  /* Determine the correct number of processes for this program. If
>   * there are more than Q processes (i.e., more processes than
>   * columns) available, we split the "basic group" into two groups.
>   * This program uses a group "group_worker" to do the real work
>   * and a group "group_other" for the remaining processes of the
>   * "basic group". The latter have nothing to do and can terminate
>   * immediately. If there are less than or equal to Q processes
>   * available all processes belong to group "group_worker" and group
>   * "group_other" is empty. At first we find out which processes
>   * belong to the "basic group".
>   */
>  MPI_Comm_group (MPI_COMM_WORLD, &group_comm_world);
>  if (ntasks > Q)
>  {
>    /* There are too many processes, so that we must build a new group
>     * with "num_worker" processes. "num_worker" will be the minimum of
>     * DEF_NUM_WORKER and the "universe size" if it is supported by the
>     * MPI implementation. At first we must check if DEF_NUM_WORKER has
>     * a suitable value.
>     */
>    if (DEF_NUM_WORKER > Q)
>    {
>      if (mytid == 0)
>      {
>       fprintf (stderr, "\nError:\tInternal program error.\n"
>                "\tConstant DEF_NUM_WORKER has value %d but must be\n"
>                "\tlower than or equal to %d. Please change source\n"
>                "\tcode and compile the program again.\n\n",
>                DEF_NUM_WORKER, Q);
>      }
>      MPI_Group_free (&group_comm_world);
>      MPI_Finalize ();
>      exit (EXIT_FAILURE);
>    }
>    /* determine the universe size, set "num_worker" in an
>     * appropriate way, and allocate memory for the array containing
>     * the ranks of the members of the new group
>     */
>    MPI_Comm_get_attr (MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,
>                      &universe_size_ptr, &universe_size_flag);
>    if ((universe_size_flag != 0) && (*universe_size_ptr > 0))
>    {
>      num_worker = MIN (DEF_NUM_WORKER, *universe_size_ptr);
>    }
>    else
>    {
>      num_worker = DEF_NUM_WORKER;
>    }
>    group_w_mem = (int *) malloc (num_worker * sizeof (int));
>    TestEqualsNULL (group_w_mem);      /* test if memory was available */
>    if (mytid == 0)
>    {
>      printf ("\nYou have started %d processes but I need at most "
>             "%d processes.\n"
>             "The universe contains %d \"virtual cpu's\" (\"0\" means "
>             "not supported).\n"
>             "I build a new worker group with %d processes. The "
>             "processes with\n"
>             "the following ranks in the basic group belong to "
>             "the new group:\n  ",
>             ntasks, Q, *universe_size_ptr, num_worker);
>    }
>    for (i = 0; i < num_worker; ++i)
>    {
>      /* fetch some ranks from the basic group for the new worker
>       * group, e.g. the last num_worker ranks to demonstrate that
>       * a process may have different ranks in different groups
>       */
>      group_w_mem[i] = (ntasks - num_worker) + i;
>      if (mytid == 0)
>      {
>       printf ("%d   ", group_w_mem[i]);
>      }
>    }
>    if (mytid == 0)
>    {
>      printf ("\n\n");
>    }
>    /* Create group "group_worker"                                     */
>    MPI_Group_incl (group_comm_world, num_worker, group_w_mem,
>                   &group_worker);
>    free (group_w_mem);
>  }
>  else
>  {
>    /* there are at most as many processes as columns in our matrix,
>     * i.e., we can use the "basic group"
>     */
>    group_worker = group_comm_world;
>  }
>  /* Create group "group_other" which demonstrates only how to use
>   * another group operation and which has  nothing to do in this
>   * program.
>   */
>  MPI_Group_difference (group_comm_world, group_worker,
>                       &group_other);
>  MPI_Group_free (&group_comm_world);
>  /* Create communicators for both groups. The communicator is only
>   * defined for all processes of the group and it is undefined
>   * (MPI_COMM_NULL) for all other processes.
>   */
>  MPI_Comm_create (MPI_COMM_WORLD, group_worker, &COMM_WORKER);
>  MPI_Comm_create (MPI_COMM_WORLD, group_other, &COMM_OTHER);
> 
> 
>  /* =========================================================
>   * ======                                            ======
>   * ======  Supply work for all different groups.     ======
>   * ======                                            ======
>   * ======                                            ======
>   * ====== At first you must find out if a process    ======
>   * ====== belongs to a special group. You can use    ======
>   * ====== MPI_Group_rank for this purpose. It returns        ======
>   * ====== the rank of the calling process in the     ======
>   * ====== specified group or MPI_UNDEFINED if the    ======
>   * ====== calling process is not a member of the     ======
>   * ====== group.                                     ======
>   * ======                                            ======
>   * =========================================================
>   */
> 
> 
>  /* =========================================================
>   * ======  This is the group "group_worker".         ======
>   * =========================================================
>   */
>  MPI_Group_rank (group_worker, &group_w_mytid);
>  if (group_w_mytid != MPI_UNDEFINED)
>  {
>    MPI_Comm_size (COMM_WORKER, &group_w_ntasks);  /* # of processes   */
>    /* Now let's start with the real work                              */
>    MPI_Get_processor_name (processor_name, &namelen);
>    /* With the next statement every process executing this code will
>     * print one line on the display. It may happen that the lines will
>     * get mixed up because the display is a critical section. In general
>     * only one process (mostly the process with rank 0) will print on
>     * the display and all other processes will send their messages to
>     * this process. Nevertheless for debugging purposes (or to
>     * demonstrate that it is possible) it may be useful if every
>     * process prints itself.
>     */
>    fprintf (stdout, "Process %d of %d running on %s\n",
>            group_w_mytid, group_w_ntasks, processor_name);
>    fflush (stdout);
>    MPI_Barrier (COMM_WORKER);         /* wait for all other processes */
> 
>    /* Build the new type for a strided vector and resize the extent
>     * of the new datatype in such a way that the extent of the whole
>     * column looks like just one element so that the next column
>     * starts in matrix[0][i] in MPI_Scatterv/MPI_Gatherv.
>     */
>    MPI_Type_vector (P, 1, Q, MPI_DOUBLE, &tmp_column_t);
>    MPI_Type_create_resized (tmp_column_t, 0, sizeof (double),
>                            &column_t);
>    MPI_Type_commit (&column_t);
>    MPI_Type_free (&tmp_column_t);
>    if (group_w_mytid == 0)
>    {
>      tmp = 1;
>      for (i = 0; i < P; ++i)          /* initialize matrix            */
>      {
>       for (j = 0; j < Q; ++j)
>        {
>         matrix[i][j] = tmp++;
>       }
>      }
>      printf ("\n\noriginal matrix:\n\n");
>      print_matrix (P, Q, (double **) matrix);
>    }
>    /* allocate memory for array containing the number of columns of a
>     * column block for each process
>     */
>    num_columns = (int *) malloc (group_w_ntasks * sizeof (int));
>    TestEqualsNULL (num_columns);      /* test if memory was available */
> 
>    /* do an unnecessary initialization to make the GNU compiler happy
>     * so that you won't get a warning about the use of a possibly
>     * uninitialized variable
>     */
>    sr_counts = NULL;
>    sr_disps  = NULL;
>    if (group_w_mytid == 0)
>    {
>      /* allocate memory for arrays containing the size and
>       * displacement of each column block
>       */
>      sr_counts = (int *) malloc (group_w_ntasks * sizeof (int));
>      TestEqualsNULL (sr_counts);
>      sr_disps = (int *) malloc (group_w_ntasks * sizeof (int));
>      TestEqualsNULL (sr_disps);
>      /* compute number of columns in column block for each process    */
>      tmp = Q / group_w_ntasks;
>      for (i = 0; i < group_w_ntasks; ++i)
>      {
>       num_columns[i] = tmp;           /* number of columns            */
>      }
>      for (i = 0; i < (Q % group_w_ntasks); ++i)       /* adjust size  */
>      {
>       num_columns[i]++;
>      }
>      for (i = 0; i < group_w_ntasks; ++i)
>      {
>       /* nothing to do because "column_t" contains already all
>        * elements of a column, i.e., the "size" is equal to the
>        * number of columns in the block
>        */
>       sr_counts[i] = num_columns[i];  /* "size" of column-block       */
>      }
>      sr_disps[0] = 0;                 /* start of i-th column-block   */
>      for (i = 1; i < group_w_ntasks; ++i)
>      {
>       sr_disps[i] = sr_disps[i - 1] + sr_counts[i - 1];
>      }
>    }
>    /* inform all processes about their column block sizes             */
>    MPI_Bcast (num_columns, group_w_ntasks, MPI_INT, 0, COMM_WORKER);
>    /* allocate memory for a column block and define a new derived
>     * data type for the column block. This data type is possibly
>     * different for different processes if the number of processes
>     * isn't a factor of the row size of the original matrix. Don't
>     * forget to resize the extent of the new data type in such a
>     * way that the extent of the whole column looks like just one
>     * element so that the next column starts in col_block[0][i]
>     * in MPI_Scatterv/MPI_Gatherv.
>     */
>    col_block = (double **) malloc (P * num_columns[group_w_mytid] *
>                                   sizeof (double));
>    TestEqualsNULL (col_block);
>    MPI_Type_vector (P, 1, num_columns[group_w_mytid], MPI_DOUBLE,
>                    &tmp_column_t);
>    MPI_Type_create_resized (tmp_column_t, 0, sizeof (double),
>                            &col_block_t);
>    MPI_Type_commit (&col_block_t);
>    MPI_Type_free (&tmp_column_t);
>    /* send column block i of "matrix" to process i                    */
>    MPI_Scatterv (matrix, sr_counts, sr_disps, column_t,
>                 col_block, num_columns[group_w_mytid],
>                 col_block_t, 0, COMM_WORKER);
>    /* Modify column elements. The compiler doesn't know the structure
>     * of the column block matrix so that you have to do the index
>     * calculations for mat[i][j] yourself. In C a matrix is stored
>     * row-by-row so that the i-th row starts at location "i * q" if
>     * the matrix has "q" columns. Therefore the address of mat[i][j]
>     * can be expressed as "(double *) mat + i * q + j" and mat[i][j]
>     * itself as "*((double *) mat + i * q + j)".
>     */
>    for (i = 0; i < P; ++i)
>    {
>      for (j = 0; j < num_columns[group_w_mytid]; ++j)
>      {
>       if ((group_w_mytid % 2) == 0)
>       {
>         /* col_block[i][j] *= col_block[i][j]                         */
> 
>         *((double *) col_block + i * num_columns[group_w_mytid] + j) *=
>         *((double *) col_block + i * num_columns[group_w_mytid] + j);
>       }
>       else
>       {
>         /* col_block[i][j] *= FACTOR                                  */
> 
>         *((double *) col_block + i * num_columns[group_w_mytid] + j) *=
>           FACTOR;
>       }
>      }
>    }
>    /* receive column-block i of "matrix" from process i               */
>    MPI_Gatherv (col_block, num_columns[group_w_mytid], col_block_t,
>                matrix, sr_counts, sr_disps, column_t,
>                0, COMM_WORKER);
>    if (group_w_mytid == 0)
>    {
>      printf ("\n\nresult matrix:\n"
>             "  elements are sqared in columns:\n  ");
>      tmp  = 0;
>      tmp1 = 0;
>      for (i = 0; i < group_w_ntasks; ++i)
>      {
>       tmp1 = tmp1 + num_columns[i];
>       if ((i % 2) == 0)
>       {
>         for (j = tmp; j < tmp1; ++j)
>         {
>           printf ("%4d", j);
>         }
>       }
>       tmp = tmp1;
>      }
>      printf ("\n  elements are multiplied with %d in columns:\n  ",
>             FACTOR);
>      tmp  = 0;
>      tmp1 = 0;
>      for (i = 0; i < group_w_ntasks; ++i)
>      {
>       tmp1 = tmp1 + num_columns[i];
>       if ((i % 2) != 0)
>       {
>         for (j = tmp; j < tmp1; ++j)
>         {
>           printf ("%4d", j);
>         }
>       }
>       tmp = tmp1;
>      }
>      printf ("\n\n\n");
>      print_matrix (P, Q, (double **) matrix);
>      free (sr_counts);
>      free (sr_disps);
>    }
>    free (num_columns);
>    free (col_block);
>    MPI_Type_free (&column_t);
>    MPI_Type_free (&col_block_t);
>    MPI_Comm_free (&COMM_WORKER);
>  }
> 
> 
>  /* =========================================================
>   * ======  This is the group "group_other".          ======
>   * =========================================================
>   */
>  MPI_Group_rank (group_other, &group_o_mytid);
>  if (group_o_mytid != MPI_UNDEFINED)
>  {
>    /* Nothing to do (only to demonstrate how to divide work for
>     * different groups).
>     */
>    MPI_Comm_size (COMM_OTHER, &group_o_ntasks);
>    if (group_o_mytid == 0)
>    {
>      if (group_o_ntasks == 1)
>      {
>       printf ("\nGroup \"group_other\" contains %d process "
>               "which has\n"
>               "nothing to do.\n\n", group_o_ntasks);
>      }
>      else
>      {
>       printf ("\nGroup \"group_other\" contains %d processes "
>               "which have\n"
>               "nothing to do.\n\n", group_o_ntasks);
>      }
>    }
>    MPI_Comm_free (&COMM_OTHER);
>  }
> 
> 
>  /* =========================================================
>   * ======  all groups will reach this point          ======
>   * =========================================================
>   */
>  MPI_Group_free (&group_worker);
>  MPI_Group_free (&group_other);
>  MPI_Finalize ();
>  return EXIT_SUCCESS;
> }
> 
> 
> /* Print the values of an arbitrary 2D-matrix of "double" values. The
> * compiler doesn't know the structure of the matrix so that you have
> * to do the index calculations for mat[i][j] yourself. In C a matrix
> * is stored row-by-row so that the i-th row starts at location "i * q"
> * if the matrix has "q" columns. Therefore the address of mat[i][j]
> * can be expressed as "(double *) mat + i * q + j" and mat[i][j]
> * itself as "*((double *) mat + i * q + j)".
> *
> * input parameters:   p       number of rows
> *                     q       number of columns
> *                     mat     2D-matrix of "double" values
> * output parameters:  none
> * return value:       none
> * side effects:       none
> *
> */
> void print_matrix (int p, int q, double **mat)
> {
>  int i, j;                            /* loop variables               */
> 
>  for (i = 0; i < p; ++i)
>  {
>    for (j = 0; j < q; ++j)
>    {
>      printf ("%6g", *((double *) mat + i * q + j));
>    }
>    printf ("\n");
>  }
>  printf ("\n");
> }
> _______________________________________________
> users mailing list
> us...@open-mpi.org
> http://www.open-mpi.org/mailman/listinfo.cgi/users


Reply via email to