Hi Robin Can you please reply.
I just want to add one more thing, that yesterday I tried with connect.protocal=eager. Task distribution was balanced after that. Regards and Thanks Deepak Raghav On Tue, Jun 9, 2020 at 2:37 PM Deepak Raghav <deepakragha...@gmail.com> wrote: > Hi Robin > > Thanks for your reply and accept my apology for the delayed response. > > As you suggested that we should have a separate worker cluster based on > workload pattern. But as you said, task allocation is nondeterministic, so > same things can happen in the new cluster. > > Please let me know if my understanding is correct or not. > > Regards and Thanks > Deepak Raghav > > > > On Tue, May 26, 2020 at 8:20 PM Robin Moffatt <ro...@confluent.io> wrote: > >> The KIP for the current rebalancing protocol is probably a good reference: >> >> https://cwiki.apache.org/confluence/display/KAFKA/KIP-415:+Incremental+Cooperative+Rebalancing+in+Kafka+Connect >> >> >> -- >> >> Robin Moffatt | Senior Developer Advocate | ro...@confluent.io | @rmoff >> >> >> On Tue, 26 May 2020 at 14:25, Deepak Raghav <deepakragha...@gmail.com> >> wrote: >> >> > Hi Robin >> > >> > Thanks for the clarification. >> > >> > As you suggested, that task allocation between the workers is >> > nondeterministic. I have shared the same information within in my team >> but >> > there are some other parties, with whom I need to share this >> information as >> > explanation for the issue raised by them and I cannot show this mail as >> a >> > reference. >> > >> > It would be very great if you please share any link/discussion reference >> > regarding the same. >> > >> > Regards and Thanks >> > Deepak Raghav >> > >> > >> > >> > On Thu, May 21, 2020 at 2:12 PM Robin Moffatt <ro...@confluent.io> >> wrote: >> > >> > > I don't think you're right to assert that this is "expected >> behaviour": >> > > >> > > > the tasks are divided in below pattern when they are first time >> > > registered >> > > >> > > Kafka Connect task allocation is non-determanistic. >> > > >> > > I'm still not clear if you're solving for a theoretical problem or an >> > > actual one. If this is an actual problem that you're encountering and >> > need >> > > a solution to then since the task allocation is not deterministic it >> > sounds >> > > like you need to deploy separate worker clusters based on the workload >> > > patterns that you are seeing and machine resources available. >> > > >> > > >> > > -- >> > > >> > > Robin Moffatt | Senior Developer Advocate | ro...@confluent.io | >> @rmoff >> > > >> > > >> > > On Wed, 20 May 2020 at 21:29, Deepak Raghav <deepakragha...@gmail.com >> > >> > > wrote: >> > > >> > > > Hi Robin >> > > > >> > > > I had gone though the link you provided, It is not helpful in my >> case. >> > > > Apart from this, *I am not getting why the tasks are divided in >> *below >> > > > pattern* when they are *first time registered*, which is expected >> > > behavior. >> > > > I*s there any parameter which we can pass in worker property file >> which >> > > > handle the task assignment strategy like we have range assigner or >> > round >> > > > robin in consumer-group ? >> > > > >> > > > connector rest status api result after first registration : >> > > > >> > > > { >> > > > "name": "REGION_CODE_UPPER-Cdb_Dchchargeableevent", >> > > > "connector": { >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > }, >> > > > "tasks": [ >> > > > { >> > > > "id": 0, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > }, >> > > > { >> > > > "id": 1, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > } >> > > > ], >> > > > "type": "sink" >> > > > } >> > > > >> > > > and >> > > > >> > > > { >> > > > "name": "REGION_CODE_UPPER-Cdb_Neatransaction", >> > > > "connector": { >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > }, >> > > > "tasks": [ >> > > > { >> > > > "id": 0, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > }, >> > > > { >> > > > "id": 1, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > } >> > > > ], >> > > > "type": "sink" >> > > > } >> > > > >> > > > >> > > > But when I stop the second worker process and wait for >> > > > scheduled.rebalance.max.delay.ms time i.e 5 min to over, and start >> the >> > > > process again. Result is different. >> > > > >> > > > { >> > > > "name": "REGION_CODE_UPPER-Cdb_Dchchargeableevent", >> > > > "connector": { >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > }, >> > > > "tasks": [ >> > > > { >> > > > "id": 0, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > }, >> > > > { >> > > > "id": 1, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.5:*8080*" >> > > > } >> > > > ], >> > > > "type": "sink" >> > > > } >> > > > >> > > > and >> > > > >> > > > { >> > > > "name": "REGION_CODE_UPPER-Cdb_Neatransaction", >> > > > "connector": { >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > }, >> > > > "tasks": [ >> > > > { >> > > > "id": 0, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > }, >> > > > { >> > > > "id": 1, >> > > > "state": "RUNNING", >> > > > "worker_id": "10.0.0.4:*8078*" >> > > > } >> > > > ], >> > > > "type": "sink" >> > > > } >> > > > >> > > > Regards and Thanks >> > > > Deepak Raghav >> > > > >> > > > >> > > > >> > > > On Wed, May 20, 2020 at 9:29 PM Robin Moffatt <ro...@confluent.io> >> > > wrote: >> > > > >> > > > > Thanks for the clarification. If this is an actual problem that >> > you're >> > > > > encountering and need a solution to then since the task >> allocation is >> > > not >> > > > > deterministic it sounds like you need to deploy separate worker >> > > clusters >> > > > > based on the workload patterns that you are seeing and machine >> > > resources >> > > > > available. >> > > > > >> > > > > >> > > > > -- >> > > > > >> > > > > Robin Moffatt | Senior Developer Advocate | ro...@confluent.io | >> > > @rmoff >> > > > > >> > > > > >> > > > > On Wed, 20 May 2020 at 16:39, Deepak Raghav < >> > deepakragha...@gmail.com> >> > > > > wrote: >> > > > > >> > > > > > Hi Robin >> > > > > > >> > > > > > Replying to your query i.e >> > > > > > >> > > > > > One thing I'd ask at this point is though if it makes any >> > difference >> > > > > where >> > > > > > the tasks execute? >> > > > > > >> > > > > > It actually makes difference to us, we have 16 connectors and >> as I >> > > > stated >> > > > > > tasks division earlier, first 8 connector' task are assigned to >> > first >> > > > > > worker process and another connector's task to another worker >> > process >> > > > and >> > > > > > just to mention that these 16 connectors are sink connectors. >> Each >> > > sink >> > > > > > connector consumes message from different topic.There may be a >> case >> > > > when >> > > > > > messages are coming only for first 8 connector's topic and >> because >> > > all >> > > > > the >> > > > > > tasks of these connectors are assigned to First Worker, load >> would >> > be >> > > > > high >> > > > > > on it and another set of connectors in another worker would be >> > idle. >> > > > > > >> > > > > > Instead, if the task would have been divided evenly then this >> case >> > > > would >> > > > > > have been avoided. Because tasks of each connector would be >> present >> > > in >> > > > > both >> > > > > > workers process like below : >> > > > > > >> > > > > > *W1* *W2* >> > > > > > C1T1 C1T2 >> > > > > > C2T2 C2T2 >> > > > > > >> > > > > > I hope, I gave your answer, >> > > > > > >> > > > > > >> > > > > > Regards and Thanks >> > > > > > Deepak Raghav >> > > > > > >> > > > > > >> > > > > > >> > > > > > On Wed, May 20, 2020 at 4:42 PM Robin Moffatt < >> ro...@confluent.io> >> > > > > wrote: >> > > > > > >> > > > > > > OK, I understand better now. >> > > > > > > >> > > > > > > You can read more about the guts of the rebalancing protocol >> that >> > > > Kafka >> > > > > > > Connect uses as of Apache Kafka 2.3 an onwards here: >> > > > > > > >> > > > > > >> > > > > >> > > > >> > > >> > >> https://www.confluent.io/blog/incremental-cooperative-rebalancing-in-kafka/ >> > > > > > > >> > > > > > > One thing I'd ask at this point is though if it makes any >> > > difference >> > > > > > where >> > > > > > > the tasks execute? The point of a cluster is that Kafka >> Connect >> > > > manages >> > > > > > the >> > > > > > > workload allocation. If you need workload separation and >> > > > > > > guaranteed execution locality I would suggest separate Kafka >> > > Connect >> > > > > > > distributed clusters. >> > > > > > > >> > > > > > > >> > > > > > > -- >> > > > > > > >> > > > > > > Robin Moffatt | Senior Developer Advocate | >> ro...@confluent.io | >> > > > > @rmoff >> > > > > > > >> > > > > > > >> > > > > > > On Wed, 20 May 2020 at 10:24, Deepak Raghav < >> > > > deepakragha...@gmail.com> >> > > > > > > wrote: >> > > > > > > >> > > > > > > > Hi Robin >> > > > > > > > >> > > > > > > > Thanks for your reply. >> > > > > > > > >> > > > > > > > We are having two worker on different IP. The example which >> I >> > > gave >> > > > > you >> > > > > > it >> > > > > > > > was just a example. We are using kafka version 2.3.1. >> > > > > > > > >> > > > > > > > Let me tell you again with a simple example. >> > > > > > > > >> > > > > > > > Suppose, we have two EC2 node, N1 and N2 having worker >> process >> > W1 >> > > > and >> > > > > > W2 >> > > > > > > > running in distribute mode with groupId i.e in same cluster >> and >> > > two >> > > > > > > > connectors with having two task each i.e >> > > > > > > > >> > > > > > > > Node N1: W1 is running >> > > > > > > > Node N2 : W2 is running >> > > > > > > > >> > > > > > > > First Connector (C1) : Task1 with id : C1T1 and task 2 with >> id >> > : >> > > > C1T2 >> > > > > > > > Second Connector (C2) : Task1 with id : C2T1 and task 2 with >> > id : >> > > > > C2T2 >> > > > > > > > >> > > > > > > > Now Suppose If both W1 and W2 worker process are running >> and I >> > > > > > register >> > > > > > > > Connector C1 and C2 one after another i.e sequentially, on >> any >> > of >> > > > the >> > > > > > > > worker process, the tasks division between the worker >> > > > > > > > node are happening like below, which is expected. >> > > > > > > > >> > > > > > > > *W1* *W2* >> > > > > > > > C1T1 C1T2 >> > > > > > > > C2T2 C2T2 >> > > > > > > > >> > > > > > > > Now, suppose I stop one worker process e.g W2 and start >> after >> > > some >> > > > > > time, >> > > > > > > > the tasks division is changed like below i.e first >> connector's >> > > task >> > > > > > move >> > > > > > > to >> > > > > > > > W1 and second connector's task move to W2 >> > > > > > > > >> > > > > > > > *W1* *W2* >> > > > > > > > C1T1 C2T1 >> > > > > > > > C1T2 C2T2 >> > > > > > > > >> > > > > > > > >> > > > > > > > Please let me know, If it is understandable or not. >> > > > > > > > >> > > > > > > > Note : Actually, In production, we are gonna have 16 >> connectors >> > > > > having >> > > > > > 10 >> > > > > > > > task each and two worker node. With above scenario, first 8 >> > > > > > connectors's >> > > > > > > > task move to W1 and next 8 connector' task move to W2, >> Which is >> > > not >> > > > > > > > expected. >> > > > > > > > >> > > > > > > > >> > > > > > > > Regards and Thanks >> > > > > > > > Deepak Raghav >> > > > > > > > >> > > > > > > > >> > > > > > > > >> > > > > > > > On Wed, May 20, 2020 at 1:41 PM Robin Moffatt < >> > > ro...@confluent.io> >> > > > > > > wrote: >> > > > > > > > >> > > > > > > > > So you're running two workers on the same machine >> (10.0.0.4), >> > > is >> > > > > > > > > that correct? Normally you'd run one worker per machine >> > unless >> > > > > there >> > > > > > > was >> > > > > > > > a >> > > > > > > > > particular reason otherwise. >> > > > > > > > > What version of Apache Kafka are you using? >> > > > > > > > > I'm not clear from your question if the distribution of >> tasks >> > > is >> > > > > > > > > presenting a problem to you (if so please describe why), >> or >> > if >> > > > > you're >> > > > > > > > just >> > > > > > > > > interested in the theory behind the rebalancing protocol? >> > > > > > > > > >> > > > > > > > > >> > > > > > > > > -- >> > > > > > > > > >> > > > > > > > > Robin Moffatt | Senior Developer Advocate | >> > ro...@confluent.io >> > > | >> > > > > > > @rmoff >> > > > > > > > > >> > > > > > > > > >> > > > > > > > > On Wed, 20 May 2020 at 06:46, Deepak Raghav < >> > > > > > deepakragha...@gmail.com> >> > > > > > > > > wrote: >> > > > > > > > > >> > > > > > > > > > Hi >> > > > > > > > > > >> > > > > > > > > > Please, can anybody help me with this? >> > > > > > > > > > >> > > > > > > > > > Regards and Thanks >> > > > > > > > > > Deepak Raghav >> > > > > > > > > > >> > > > > > > > > > >> > > > > > > > > > >> > > > > > > > > > On Tue, May 19, 2020 at 1:37 PM Deepak Raghav < >> > > > > > > > deepakragha...@gmail.com> >> > > > > > > > > > wrote: >> > > > > > > > > > >> > > > > > > > > > > Hi Team >> > > > > > > > > > > >> > > > > > > > > > > We have two worker node in a cluster and 2 connector >> with >> > > > > having >> > > > > > 10 >> > > > > > > > > tasks >> > > > > > > > > > > each. >> > > > > > > > > > > >> > > > > > > > > > > Now, suppose if we have two kafka connect process >> W1(Port >> > > > 8080) >> > > > > > and >> > > > > > > > > > > W2(Port 8078) started already in distribute mode and >> then >> > > > > > register >> > > > > > > > the >> > > > > > > > > > > connectors, task of one connector i.e 10 tasks are >> > divided >> > > > > > equally >> > > > > > > > > > between >> > > > > > > > > > > two worker i.e first task of A connector to W1 worker >> > node >> > > > and >> > > > > > sec >> > > > > > > > task >> > > > > > > > > > of >> > > > > > > > > > > A connector to W2 worker node, similarly for first >> task >> > of >> > > B >> > > > > > > > connector, >> > > > > > > > > > > will go to W1 node and sec task of B connector go to >> W2 >> > > node. >> > > > > > > > > > > >> > > > > > > > > > > e.g >> > > > > > > > > > > *#First Connector : * >> > > > > > > > > > > { >> > > > > > > > > > > "name": "REGION_CODE_UPPER-Cdb_Dchchargeableevent", >> > > > > > > > > > > "connector": { >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:*8080*" >> > > > > > > > > > > }, >> > > > > > > > > > > "tasks": [ >> > > > > > > > > > > { >> > > > > > > > > > > "id": 0, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:*8078*" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 1, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 2, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 3, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 4, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 5, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 6, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 7, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 8, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 9, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > } >> > > > > > > > > > > ], >> > > > > > > > > > > "type": "sink" >> > > > > > > > > > > } >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > *#Sec connector* >> > > > > > > > > > > >> > > > > > > > > > > { >> > > > > > > > > > > "name": "REGION_CODE_UPPER-Cdb_Neatransaction", >> > > > > > > > > > > "connector": { >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > "tasks": [ >> > > > > > > > > > > { >> > > > > > > > > > > "id": 0, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 1, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 2, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 3, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 4, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 5, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 6, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 7, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 8, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 9, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > } >> > > > > > > > > > > ], >> > > > > > > > > > > "type": "sink" >> > > > > > > > > > > } >> > > > > > > > > > > >> > > > > > > > > > > But I have seen a strange behavior, when I just >> shutdown >> > W2 >> > > > > > worker >> > > > > > > > node >> > > > > > > > > > > and start it again task are divided but in diff way >> i.e >> > all >> > > > the >> > > > > > > tasks >> > > > > > > > > of >> > > > > > > > > > A >> > > > > > > > > > > connector will get into W1 node and tasks of B >> Connector >> > > into >> > > > > W2 >> > > > > > > > node. >> > > > > > > > > > > >> > > > > > > > > > > Can you please have a look for this. >> > > > > > > > > > > >> > > > > > > > > > > *#First Connector* >> > > > > > > > > > > >> > > > > > > > > > > { >> > > > > > > > > > > "name": "REGION_CODE_UPPER-Cdb_Dchchargeableevent", >> > > > > > > > > > > "connector": { >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > "tasks": [ >> > > > > > > > > > > { >> > > > > > > > > > > "id": 0, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 1, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 2, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 3, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 4, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 5, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 6, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 7, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 8, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 9, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8080" >> > > > > > > > > > > } >> > > > > > > > > > > ], >> > > > > > > > > > > "type": "sink" >> > > > > > > > > > > } >> > > > > > > > > > > >> > > > > > > > > > > *#Second Connector *: >> > > > > > > > > > > >> > > > > > > > > > > { >> > > > > > > > > > > "name": "REGION_CODE_UPPER-Cdb_Neatransaction", >> > > > > > > > > > > "connector": { >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > "tasks": [ >> > > > > > > > > > > { >> > > > > > > > > > > "id": 0, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 1, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 2, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 3, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 4, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 5, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 6, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 7, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 8, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > }, >> > > > > > > > > > > { >> > > > > > > > > > > "id": 9, >> > > > > > > > > > > "state": "RUNNING", >> > > > > > > > > > > "worker_id": "10.0.0.4:8078" >> > > > > > > > > > > } >> > > > > > > > > > > ], >> > > > > > > > > > > "type": "sink" >> > > > > > > > > > > } >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > > Regards and Thanks >> > > > > > > > > > > Deepak Raghav >> > > > > > > > > > > >> > > > > > > > > > > >> > > > > > > > > > >> > > > > > > > > >> > > > > > > > >> > > > > > > >> > > > > > >> > > > > >> > > > >> > > >> > >> >