What is the Spark master that you are using. Use local[4], not local if you are running locally.
On Mon, Nov 10, 2014 at 3:01 PM, Something Something <mailinglist...@gmail.com> wrote: > I am embarrassed to admit but I can't get a basic 'word count' to work under > Kafka/Spark streaming. My code looks like this. I don't see any word > counts in console output. Also, don't see any output in UI. Needless to > say, I am newbie in both 'Spark' as well as 'Kafka'. > > Please help. Thanks. > > Here's the code: > > public static void main(String[] args) { > if (args.length < 4) { > System.err.println("Usage: JavaKafkaWordCount <zkQuorum> <group> > <topics> <numThreads>"); > System.exit(1); > } > > // StreamingExamples.setStreamingLogLevels(); > // SparkConf sparkConf = new > SparkConf().setAppName("JavaKafkaWordCount"); > > // Location of the Spark directory > String sparkHome = "/opt/mapr/spark/spark-1.0.2/"; > > // URL of the Spark cluster > String sparkUrl = "spark://mymachine:7077"; > > // Location of the required JAR files > String jarFiles = > "./spark-streaming-kafka_2.10-1.1.0.jar,./DlSpark-1.0-SNAPSHOT.jar,./zkclient-0.3.jar,./kafka_2.10-0.8.1.1.jar,./metrics-core-2.2.0.jar"; > > SparkConf sparkConf = new SparkConf(); > sparkConf.setAppName("JavaKafkaWordCount"); > sparkConf.setJars(new String[]{jarFiles}); > sparkConf.setMaster(sparkUrl); > sparkConf.set("spark.ui.port", "2348"); > sparkConf.setSparkHome(sparkHome); > > Map<String, String> kafkaParams = new HashMap<String, String>(); > kafkaParams.put("zookeeper.connect", "myedgenode:2181"); > kafkaParams.put("group.id", "1"); > kafkaParams.put("metadata.broker.list", "myedgenode:9092"); > kafkaParams.put("serializer.class", > "kafka.serializer.StringEncoder"); > kafkaParams.put("request.required.acks", "1"); > > // Create the context with a 1 second batch size > JavaStreamingContext jssc = new JavaStreamingContext(sparkConf, new > Duration(2000)); > > int numThreads = Integer.parseInt(args[3]); > Map<String, Integer> topicMap = new HashMap<String, Integer>(); > String[] topics = args[2].split(","); > for (String topic: topics) { > topicMap.put(topic, numThreads); > } > > // JavaPairReceiverInputDStream<String, String> messages = > // KafkaUtils.createStream(jssc, args[0], args[1], topicMap); > JavaPairDStream<String, String> messages = > KafkaUtils.createStream(jssc, > String.class, > String.class, > StringDecoder.class, > StringDecoder.class, > kafkaParams, > topicMap, > StorageLevel.MEMORY_ONLY_SER()); > > > JavaDStream<String> lines = messages.map(new Function<Tuple2<String, > String>, String>() { > @Override > public String call(Tuple2<String, String> tuple2) { > return tuple2._2(); > } > }); > > JavaDStream<String> words = lines.flatMap(new > FlatMapFunction<String, String>() { > @Override > public Iterable<String> call(String x) { > return Lists.newArrayList(SPACE.split(x)); > } > }); > > JavaPairDStream<String, Integer> wordCounts = words.mapToPair( > new PairFunction<String, String, Integer>() { > @Override > public Tuple2<String, Integer> call(String s) { > return new Tuple2<String, Integer>(s, 1); > } > }).reduceByKey(new Function2<Integer, Integer, Integer>() { > @Override > public Integer call(Integer i1, Integer i2) { > return i1 + i2; > } > }); > > wordCounts.print(); > jssc.start(); > jssc.awaitTermination(); >