Lee, That link looks like it's working for me now. Must have been a
temporary server error.

Will

<http://www.verizonmedia.com>

Will Lauer

Senior Principal Architect, Audience & Advertising Reporting
Data Platforms & Systems Engineering

M 508 561 6427
1908 S. First St
Champaign, IL 61822

<http://www.facebook.com/verizonmedia>   <http://twitter.com/verizonmedia>
<https://www.linkedin.com/company/verizon-media/>
<http://www.instagram.com/verizonmedia>



On Thu, Nov 19, 2020 at 9:57 AM leerho <lee...@gmail.com> wrote:

> Hi Justin,  the site you referenced returns an error 500 (internal server
> error).  It might be down, or out-of-service.  You might also check to make
> sure it is the correct URL.
>
> Thanks!
> Lee.
>
> On Thu, Nov 19, 2020 at 6:05 AM Justin Thaler <justin.r.tha...@gmail.com>
> wrote:
>
>> I think the way to think about this is the following. If you downsample
>> and then sketch, there are two sources of error: sampling error and
>> sketching error. The former refers to how much the answer to your query
>> over the sample deviates from the answer over the original data, while the
>> second refers to how much the estimate returned by the sketch deviates from
>> the exact answer on the sample.
>>
>> If the sampling error is very large, then no matter how accurate your
>> sketch is, your total error will be large, so you won't be gaining anything
>> by throwing resources into minimizing sketching error.
>>
>> If sampling error is very small, then there's not really a need to drive
>> sketching error any lower than you would otherwise choose it to be.
>>
>> So as a practical matter, my personal recommendation would be to make
>> sure your sample is big enough that the sampling error is very small, and
>> then set the sketching error as you normally would ignoring the subsampling.
>>
>> In case it's helpful, I should mention that there's been (at least) one
>> academic paper devoted to precisely the question of what is the best
>> approach to sketching for various query classes if data must first be
>> subsampled if you'd like to check it out:
>> https://core.ac.uk/download/pdf/212809966.pdf
>> <https://urldefense.proofpoint.com/v2/url?u=https-3A__core.ac.uk_download_pdf_212809966.pdf&d=DwMFaQ&c=sWW_bEwW_mLyN3Kx2v57Q8e-CRbmiT9yOhqES_g_wVY&r=vGHo2vqhE2ZeS_hHdb4Y3eoJ4WjVKhEg5Xld1w9ptEQ&m=TS-clarTE9n5rihY9KO9VJBABYz9__eAAcLmXJGPrLA&s=yWiRfonSO6QIO9joZFuuz_gglz6SQnYjxysLQZza5IM&e=>
>>
>> I should reiterate that there are certain types of queries that
>> inherently don't play well with random sampling (i.e., it's basically
>> impossible to give a meaningful bound on the sampling error, at least
>> without making assumptions about the data, which is something that error
>> guarantees provided by the library assiduously avoids).
>>
>> On Thu, Nov 19, 2020 at 7:20 AM Sergio Castro <sergio...@gmail.com>
>> wrote:
>>
>>> Thanks a lot for your answers to my first question, Lee and Justin.
>>>
>>> Justin, regarding this observation: "*All of that said, the library
>>> will not be able to say anything about what errors the user should expect
>>> if the data is pre-sampled, because in such a situation there are many
>>> factors that are out of the library's control.* "
>>> Trying to alleviate this problem. I know I can tune the DataSketches
>>> computation by means of trading-off memory vs accuracy.
>>> So is it correct that in the scenario where I am constrained to
>>> pre-sample the data, I should aim for the best optimization for accuracy
>>> even if this will require more memory, with the objective of alleviating
>>> the impact of my double sampling problem (meaning the pre-sampling I am
>>> constrained to do before + the sampling performed by Datasketches itself)?
>>> While in the scenarios where I am not constrained to use pre-sampling I
>>> still could use the default DataSketches configuration with a more balanced
>>> trade-off between accuracy and memory requirements?
>>>
>>> Would you say this is a good best-effort strategy? Or in both cases you
>>> would recommend me to use the same configuration ?
>>>
>>> Thanks for your time and feedback,
>>>
>>> Sergio
>>>
>>>
>>> On Thu, Nov 19, 2020 at 1:24 AM Justin Thaler <justin.r.tha...@gmail.com>
>>> wrote:
>>>
>>>> Lee's response is correct, but I'll elaborate slightly (hopefully this
>>>> is helpful instead of confusing).
>>>>
>>>> There are some queries for which the following is true: if the data
>>>> sample is uniform from the original (unsampled) data, then accurate answers
>>>> with respect to the sample are also accurate with respect to the original
>>>> (unsampled) data.
>>>>
>>>> As one example, consider quantile queries:
>>>>
>>>> If you have n original data points from an ordered domain and you
>>>> sample at least t ~= log(n)/epsilon^2 of the data points at random, it is
>>>> known that, with high probability over the sample, for each domain item i,
>>>> the fractional rank of i in the sample (i.e., the number of sampled points
>>>> less than or equal to i, divided by the sample size t) will match the
>>>> fractional rank of i in the original unsampled data (i.e., the number of
>>>> data points less than or equal to i, divided by n) up to additive error at
>>>> most epsilon.
>>>>
>>>> In fact, at a conceptual level, the KLL quantiles algorithm that's
>>>> implemented in the library is implicitly performing a type of downsampling
>>>> internally and then summarizing the sample (this is a little bit of a
>>>> simplification).
>>>>
>>>> Something similar is true for frequent items. However, it is not true
>>>> for "non-additive" queries such as unique counts.
>>>>
>>>> All of that said, the library will not be able to say anything about
>>>> what errors the user should expect if the data is pre-sampled, because in
>>>> such a situation there are many factors that are out of the library's
>>>> control.
>>>>
>>>> On Wed, Nov 18, 2020 at 3:08 PM leerho <lee...@gmail.com> wrote:
>>>>
>>>>> Sorry, if you presample your data all bets are off in terms of
>>>>> accuracy.
>>>>>
>>>>> On Wed, Nov 18, 2020 at 10:55 AM Sergio Castro <sergio...@gmail.com>
>>>>> wrote:
>>>>>
>>>>>> Hi, I am new to DataSketches.
>>>>>>
>>>>>>  I know Datasketches provides an *approximate* calculation of
>>>>>> statistics with *mathematically proven error bounds*.
>>>>>>
>>>>>> My question is:
>>>>>> Say that I am constrained to take a sampling of the original data set
>>>>>> before handling it to Datasketches (for example, I cannot take more than
>>>>>> 10.000 random rows from a table).
>>>>>> What would be the consequence of this previous sampling in the
>>>>>> "mathematically proven error bounds" of the Datasketches statistics,
>>>>>> relative to the original data set?
>>>>>>
>>>>>> Best,
>>>>>>
>>>>>> Sergio
>>>>>>
>>>>>

Reply via email to