Is this what you are expecting? root |-- code: integer (nullable = true) |-- AB_amnt: long (nullable = true) |-- AA_amnt: long (nullable = true) |-- AC_amnt: long (nullable = true) |-- load_date: date (nullable = true)
+----+-------+-------+-------+----------+ |code|AB_amnt|AA_amnt|AC_amnt|load_date | +----+-------+-------+-------+----------+ |1 |12 |22 |11 |2022-01-01| |2 |22 |28 |25 |2022-02-01| +----+-------+-------+-------+----------+ Dr Mich Talebzadeh, Architect | Data Science | Financial Crime | Forensic Analysis | GDPR view my Linkedin profile <https://www.linkedin.com/in/mich-talebzadeh-ph-d-5205b2/> On Sun, 9 Mar 2025 at 14:12, Dhruv Singla <dvsingla...@gmail.com> wrote: > Hi Everyone > > Hope you are doing well > > I have the following dataframe. > > df = spark.createDataFrame( > [ > [1, 'AB', 12, '2022-01-01'] > , [1, 'AA', 22, '2022-01-10'] > , [1, 'AC', 11, '2022-01-11'] > , [2, 'AB', 22, '2022-02-01'] > , [2, 'AA', 28, '2022-02-10'] > , [2, 'AC', 25, '2022-02-22'] > ] > , 'code: int, doc_type: string, amount: int, load_date: string' > ) > df = df.withColumn('load_date', F.to_date('load_date')) > > I want to pivot the amount but just want the first value from the date. > This is what I tried and it is not giving me the desried results. > > ( > df.groupBy('code') > .pivot('doc_type', ['AB', 'AA', 'AC']) > .agg(F.sum('amount').alias('amnt'), F.first('load_date').alias('ldt')) > .show() > ) > > +----+-------+----------+-------+----------+-------+----------+ > |code|AB_amnt| AB_ldt|AA_amnt| AA_ldt|AC_amnt| AC_ldt| > +----+-------+----------+-------+----------+-------+----------+ > | 1| 12|2022-01-01| 22|2022-01-10| 11|2022-01-11| > | 2| 22|2022-02-01| 28|2022-02-10| 25|2022-02-22| > +----+-------+----------+-------+----------+-------+----------+ > > This is what I want. > > ( > df.groupBy('code') > .agg( > F.sum(F.when(F.col('doc_type') == 'AB', > F.col('amount'))).alias('AB_amnt') > , F.sum(F.when(F.col('doc_type') == 'AA', > F.col('amount'))).alias('AA_amnt') > , F.sum(F.when(F.col('doc_type') == 'AC', > F.col('amount'))).alias('AC_amnt') > , F.first('load_date').alias('load_date') > ) > .show() > ) > > +----+-------+-------+-------+----------+ > |code|AB_amnt|AA_amnt|AC_amnt| load_date| > +----+-------+-------+-------+----------+ > | 1| 12| 22| 11|2022-01-01| > | 2| 22| 28| 25|2022-02-01| > +----+-------+-------+-------+----------+ > > Is there any simpler way to do it? I have more than one column to put into > pivot and also to put into non pivot. > > I am using Databricks 14.3 LTS with Spark 3.5.0 > > Thanks & Regards > Dhruv >