Yes, we use org.apache.hbase.connectors.spark:hbase-spark:1.0.0.7.2.16.0-287

În mie., 30 oct. 2024 la 15:30, Gurunandan <gurunandan....@gmail.com> a
scris:

> Hi Evelina,
> Do you use Spark HBase Connector ( hbase-spark ) as part of the unit-test
> setup?
>
> regards,
> Guru
>
> On Wed, Oct 30, 2024 at 5:35 PM Evelina Dumitrescu
> <evelina.dumitrescu....@gmail.com> wrote:
> >
> > Hello,
> >
> > TLDR; The question is asked also here:
> >
> https://stackoverflow.com/questions/79139516/incompatible-configuration-used-between-spark-and-hbasetestingutility
> >
> > We are using the MiniDFSCluster and MiniHbaseCluster from
> HBaseTestingUtility to run unit tests for our Spark jobs.
> > The Spark configuration that we use is :
> >
> >     conf.set("spark.sql.catalogImplementation", "hive")
> >           .set("spark.sql.warehouse.dir", getWarehousePath)
> >           .set("javax.jdo.option.ConnectionURL",
> s"jdbc:derby:;databaseName=$getMetastorePath;create=true")
> >           .set("shark.test.data.path", dataFilePath)
> >           .set("hive.exec.dynamic.partition.mode", "nonstrict")
> >           .set("spark.kryo.registrator", "CustomKryoRegistrar")
> >           .set("spark.serializer",
> "org.apache.spark.serializer.KryoSerializer")
> >
>  .registerKryoClasses(Array(classOf[org.apache.hadoop.hbase.client.Result]))
> >
> > For the MiniDFSCluster and MiniHbaseCluster we use the default
> HbaseTestingUtility configuration.
> > The release versions that we use are:
> > - hbase-testing-util Cloudera CDP 2.4.6.7.2.16.0-287
> > - Spark 2.11
> >
> >
> >
> > In our unit tests, when we try to run a Spark job that reads Hive data,
> we get the following exception:
> >
> >
> > ```
> >  org.apache.spark.SparkException: Job aborted due to stage failure: Task
> 0 in stage 14.0 failed 1 times, most recent failure: Lost task 0.0 in stage
> 14.0 (TID 14, localhost, executor driver): java.lang.Unsuppo
> > rtedOperationException: Byte-buffer read unsupported by
> org.apache.hadoop.fs.BufferedFSInputStream
> >
> >         at
> org.apache.hadoop.fs.FSDataInputStream.read(FSDataInputStream.java:158)
> >
> >         at
> org.apache.hadoop.fs.FSDataInputStream.read(FSDataInputStream.java:154)
> >
> >         at
> org.apache.parquet.hadoop.util.H2SeekableInputStream$H2Reader.read(H2SeekableInputStream.java:81)
> >
> >         at
> org.apache.parquet.hadoop.util.H2SeekableInputStream.readFully(H2SeekableInputStream.java:90)
> >
> >         at
> org.apache.parquet.hadoop.util.H2SeekableInputStream.readFully(H2SeekableInputStream.java:75)
> >
> >         at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:546)
> >
> >         at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:516)
> >
> >         at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:510)
> >
> >         at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:459)
> >
> >         at
> org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.footerFileMetaData$lzycompute$1(ParquetFileFormat.scala:371)
> >
> >         at
> org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.footerFileMetaData$1(ParquetFileFormat.scala:370)
> >
> >         at
> org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:374)
> >
> >         at
> org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.apply(ParquetFileFormat.scala:352)
> >
> >         at org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$
> 1.org
> $apache$spark$sql$execution$datasources$FileScanRDD$$anon$$readCurrentFile(FileScanRDD.scala:124)
> >
> >         at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.nextIterator(FileScanRDD.scala:177)
> >
> >         at
> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.hasNext(FileScanRDD.scala:101)
> >
> >         at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.scan_nextBatch_0$(Unknown
> Source)
> >
> >         at
> org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage1.processNext(Unknown
> Source)
> >
> >         at
> org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
> >
> >         at
> org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:645)
> >
> >         at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:270)
> >
> >         at
> org.apache.spark.sql.execution.SparkPlan$$anonfun$2.apply(SparkPlan.scala:262)
> >
> >         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
> >
> >         at
> org.apache.spark.rdd.RDD$$anonfun$mapPartitionsInternal$1$$anonfun$apply$24.apply(RDD.scala:858)
> >
> >         at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> >
> >         at
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
> >
> >         at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
> >
> >         at
> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:52)
> >
> >         at
> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:346)
> >
> >         at org.apache.spark.rdd.RDD.iterator(RDD.scala:310)
> >
> >         at
> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:90)
> >
> >         at org.apache.spark.scheduler.Task.run(Task.scala:123)
> >
> >         at
> org.apache.spark.executor.Executor$TaskRunner$$anonfun$12.apply(Executor.scala:456)
> >
> >         at
> org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1334)
> >
> >         at
> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:462)
> >
> >         at
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
> >
> >         at
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
> >
> >         at java.lang.Thread.run(Thread.java:750)
> >
> >
> > Driver stacktrace:
> >   at org.apache.spark.scheduler.DAGScheduler.org
> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1935)
> >   at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1923)
> >   at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1922)
> >   at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> >   at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
> >   at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1922)
> >   at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:953)
> >   at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:953)
> >   at scala.Option.foreach(Option.scala:257)
> >   at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:953)
> >   ...
> >   Cause: java.lang.UnsupportedOperationException: Byte-buffer read
> unsupported by org.apache.hadoop.fs.BufferedFSInputStream
> >   at
> org.apache.hadoop.fs.FSDataInputStream.read(FSDataInputStream.java:158)
> >   at
> org.apache.hadoop.fs.FSDataInputStream.read(FSDataInputStream.java:154)
> >   at
> org.apache.parquet.hadoop.util.H2SeekableInputStream$H2Reader.read(H2SeekableInputStream.java:81)
> >   at
> org.apache.parquet.hadoop.util.H2SeekableInputStream.readFully(H2SeekableInputStream.java:90)
> >   at
> org.apache.parquet.hadoop.util.H2SeekableInputStream.readFully(H2SeekableInputStream.java:75)
> >   at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:546)
> >   at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:516)
> >   at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:510)
> >   at
> org.apache.parquet.hadoop.ParquetFileReader.readFooter(ParquetFileReader.java:459)
> >   at
> org.apache.spark.sql.execution.datasources.parquet.ParquetFileFormat$$anonfun$buildReaderWithPartitionValues$1.footerFileMetaData$lzycompute$1(ParquetFileFormat.scala:371)
> > ```
> >
> >
> > Is there an incompatible configuration used between Spark,
> MiniDFSCluster and MiniHbaseCluster ?
>

Reply via email to