On Tue, May 21, 2024 at 6:58 AM Prem Sahoo <prem.re...@gmail.com> wrote:

> Hello Vibhor,
> Thanks for the suggestion .
> I am looking for some other alternatives where I can use the same
> dataframe can be written to two destinations without re execution and cache
> or persist .
>
> Can some one help me in scenario 2 ?
> How to make spark write to MinIO faster ?
> Sent from my iPhone
>
> On May 21, 2024, at 1:18 AM, Vibhor Gupta <vibhor.gu...@walmart.com>
> wrote:
>
> 
>
> Hi Prem,
>
>
>
> You can try to write to HDFS then read from HDFS and write to MinIO.
>
>
>
> This will prevent duplicate transformation.
>
>
>
> You can also try persisting the dataframe using the DISK_ONLY level.
>
>
>
> Regards,
>
> Vibhor
>
> *From: *Prem Sahoo <prem.re...@gmail.com>
> *Date: *Tuesday, 21 May 2024 at 8:16 AM
> *To: *Spark dev list <d...@spark.apache.org>
> *Subject: *EXT: Dual Write to HDFS and MinIO in faster way
>
> *EXTERNAL: *Report suspicious emails to *Email Abuse.*
>
> Hello Team,
>
> I am planning to write to two datasource at the same time .
>
>
>
> Scenario:-
>
>
>
> Writing the same dataframe to HDFS and MinIO without re-executing the
> transformations and no cache(). Then how can we make it faster ?
>
>
>
> Read the parquet file and do a few transformations and write to HDFS and
> MinIO.
>
>
>
> here in both write spark needs execute the transformation again. Do we
> know how we can avoid re-execution of transformation  without
> cache()/persist ?
>
>
>
> Scenario2 :-
>
> I am writing 3.2G data to HDFS and MinIO which takes ~6mins.
>
> Do we have any way to make writing this faster ?
>
>
>
> I don't want to do repartition and write as repartition will have overhead
> of shuffling .
>
>
>
> Please provide some inputs.
>
>
>
>
>
>

Reply via email to