There is a paper from Databricks on this subject https://www.databricks.com/blog/2022/05/27/how-to-monitor-streaming-queries-in-pyspark.html
But having tested it, there seems to be a bug there that I reported to Databricks forum as well (in answer to a user question) I have come to a conclusion that this is a bug. In general there is a bug in obtaining individual values from the dictionary. For example, a bug in the way Spark Streaming is populating the processed_rows_per_second key within the microbatch_data -> microbatch_data = event.progres dictionary or any other key. I have explored various debugging steps, and even though the key seems to exist, the value might not be getting set. Note that the dictionary itself prints the elements correctly. This is with regard to method onQueryProgress(self, event) in class MyListener(StreamingQueryListener): For example with print(microbatch_data), you get all printed as below onQueryProgress microbatch_data received { "id" : "941e4cb6-f4ee-41f8-b662-af6dda61dc66", "runId" : "691d5eb2-140e-48c0-949a-7efbe0fa0967", "name" : null, "timestamp" : "2024-03-10T09:21:27.233Z", "batchId" : 21, "numInputRows" : 1, "inputRowsPerSecond" : 100.0, "processedRowsPerSecond" : 5.347593582887701, "durationMs" : { "addBatch" : 37, "commitOffsets" : 41, "getBatch" : 0, "latestOffset" : 0, "queryPlanning" : 5, "triggerExecution" : 187, "walCommit" : 104 }, "stateOperators" : [ ], "sources" : [ { "description" : "RateStreamV2[rowsPerSecond=1, rampUpTimeSeconds=0, numPartitions=default", "startOffset" : 20, "endOffset" : 21, "latestOffset" : 21, "numInputRows" : 1, "inputRowsPerSecond" : 100.0, "processedRowsPerSecond" : 5.347593582887701 } ], "sink" : { "description" : "org.apache.spark.sql.execution.streaming.ConsoleTable$@430a977c", "numOutputRows" : 1 } } However, the observed behaviour (i.e. processed_rows_per_second is either None or not being updated correctly). The spark version I used for my test is 3.4 Sample code uses format=rate for simulating a streaming process. You can test the code yourself, all in one from pyspark.sql import SparkSession from pyspark.sql.functions import col from pyspark.sql.streaming import DataStreamWriter, StreamingQueryListener from pyspark.sql.functions import col, round, current_timestamp, lit import uuid def process_data(df): processed_df = df.withColumn("key", lit(str(uuid.uuid4()))).\ withColumn("doubled_value", col("value") * 2). \ withColumn("op_type", lit(1)). \ withColumn("op_time", current_timestamp()) return processed_df # Create a Spark session appName = "testListener" spark = SparkSession.builder.appName(appName).getOrCreate() # Define the schema for the streaming data schema = "key string timestamp timestamp, value long" # Define my listener. class MyListener(StreamingQueryListener): def onQueryStarted(self, event): print("onQueryStarted") print(f"'{event.name}' [{event.id}] got started!") def onQueryProgress(self, event): print("onQueryProgress") # Access micro-batch data microbatch_data = event.progress print("microbatch_data received") # Check if data is received print(microbatch_data) processed_rows_per_second = microbatch_data.get("processed_rows_per_second") if processed_rows_per_second is not None: # Check if value exists print("processed_rows_per_second retrieved") print(f"Processed rows per second: {processed_rows_per_second}") else: print("processed_rows_per_second not retrieved!") def onQueryTerminated(self, event): print("onQueryTerminated") if event.exception: print(f"Query terminated with exception: {event.exception}") else: print("Query successfully terminated.") # Add my listener. listener_instance = MyListener() spark.streams.addListener(listener_instance) # Create a streaming DataFrame with the rate source streaming_df = ( spark.readStream .format("rate") .option("rowsPerSecond", 1) .load() ) # Apply processing function to the streaming DataFrame processed_streaming_df = process_data(streaming_df) # Define the output sink (for example, console sink) query = ( processed_streaming_df.select( \ col("key").alias("key") \ , col("doubled_value").alias("doubled_value") \ , col("op_type").alias("op_type") \ , col("op_time").alias("op_time")). \ writeStream.\ outputMode("append").\ format("console"). \ start() ) # Wait for the streaming query to terminate query.awaitTermination() HTH Mich Talebzadeh, Dad | Technologist | Solutions Architect | Engineer London United Kingdom view my Linkedin profile <https://www.linkedin.com/in/mich-talebzadeh-ph-d-5205b2/> https://en.everybodywiki.com/Mich_Talebzadeh *Disclaimer:* The information provided is correct to the best of my knowledge but of course cannot be guaranteed . It is essential to note that, as with any advice, quote "one test result is worth one-thousand expert opinions (Werner <https://en.wikipedia.org/wiki/Wernher_von_Braun>Von Braun <https://en.wikipedia.org/wiki/Wernher_von_Braun>)".