@Enrico Minack <[email protected]> Thanks for "unpivot" but I am using
version 3.3.0 (you are taking it way too far as usual :) )
@Sean Owen <[email protected]> Pls then show me how it can be improved by
code.
Also, why such an approach (using withColumn() ) doesn't work:
for (String columnName : df.columns()) {
df= df.withColumn(columnName,
df.select(columnName).distinct().col(columnName));
}
Le sam. 11 févr. 2023 à 13:11, Enrico Minack <[email protected]> a
écrit :
> You could do the entire thing in DataFrame world and write the result to
> disk. All you need is unpivot (to be released in Spark 3.4.0, soon).
>
> Note this is Scala but should be straightforward to translate into Java:
>
> import org.apache.spark.sql.functions.collect_set
>
> val df = Seq((1, 10, 123), (2, 20, 124), (3, 20, 123), (4, 10,
> 123)).toDF("a", "b", "c")
>
> df.unpivot(Array.empty, "column", "value")
> .groupBy("column")
> .agg(collect_set("value").as("distinct_values"))
>
> The unpivot operation turns
> +---+---+---+
> | a| b| c|
> +---+---+---+
> | 1| 10|123|
> | 2| 20|124|
> | 3| 20|123|
> | 4| 10|123|
> +---+---+---+
>
> into
>
> +------+-----+
> |column|value|
> +------+-----+
> | a| 1|
> | b| 10|
> | c| 123|
> | a| 2|
> | b| 20|
> | c| 124|
> | a| 3|
> | b| 20|
> | c| 123|
> | a| 4|
> | b| 10|
> | c| 123|
> +------+-----+
>
> The groupBy("column").agg(collect_set("value").as("distinct_values"))
> collects distinct values per column:
> +------+---------------+
>
> |column|distinct_values|
> +------+---------------+
> | c| [123, 124]|
> | b| [20, 10]|
> | a| [1, 2, 3, 4]|
> +------+---------------+
>
> Note that unpivot only works if all columns have a "common" type. Then all
> columns are cast to that common type. If you have incompatible types like
> Integer and String, you would have to cast them all to String first:
>
> import org.apache.spark.sql.types.StringType
>
> df.select(df.columns.map(col(_).cast(StringType)): _*).unpivot(...)
>
> If you want to preserve the type of the values and have multiple value
> types, you cannot put everything into a DataFrame with one distinct_values
> column. You could still have multiple DataFrames, one per data type, and
> write those, or collect the DataFrame's values into Maps:
>
> import scala.collection.immutable
>
> import org.apache.spark.sql.DataFrame
> import org.apache.spark.sql.functions.collect_set
>
> // if all you columns have the same type
> def distinctValuesPerColumnOneType(df: DataFrame): immutable.Map[String,
> immutable.Seq[Any]] = {
> df.unpivot(Array.empty, "column", "value")
> .groupBy("column")
> .agg(collect_set("value").as("distinct_values"))
> .collect()
> .map(row => row.getString(0) -> row.getSeq[Any](1).toList)
> .toMap
> }
>
>
> // if your columns have different types
> def distinctValuesPerColumn(df: DataFrame): immutable.Map[String,
> immutable.Seq[Any]] = {
> df.schema.fields
> .groupBy(_.dataType)
> .mapValues(_.map(_.name))
> .par
> .map { case (dataType, columns) => df.select(columns.map(col): _*) }
> .map(distinctValuesPerColumnOneType)
> .flatten
> .toList
> .toMap
> }
>
> val df = Seq((1, 10, "one"), (2, 20, "two"), (3, 20, "one"), (4, 10,
> "one")).toDF("a", "b", "c")
> distinctValuesPerColumn(df)
>
> The result is: (list values are of original type)
> Map(b -> List(20, 10), a -> List(1, 2, 3, 4), c -> List(one, two))
>
> Hope this helps,
> Enrico
>
>
> Am 10.02.23 um 22:56 schrieb sam smith:
>
> Hi Apotolos,
> Can you suggest a better approach while keeping values within a dataframe?
>
> Le ven. 10 févr. 2023 à 22:47, Apostolos N. Papadopoulos <
> [email protected]> a écrit :
>
>> Dear Sam,
>>
>> you are assuming that the data fits in the memory of your local machine.
>> You are using as a basis a dataframe, which potentially can be very large,
>> and then you are storing the data in local lists. Keep in mind that that
>> the number of distinct elements in a column may be very large (depending on
>> the app). I suggest to work on a solution that assumes that the number of
>> distinct values is also large. Thus, you should keep your data in
>> dataframes or RDDs, and store them as csv files, parquet, etc.
>>
>> a.p.
>>
>>
>> On 10/2/23 23:40, sam smith wrote:
>>
>> I want to get the distinct values of each column in a List (is it good
>> practice to use List here?), that contains as first element the column
>> name, and the other element its distinct values so that for a dataset we
>> get a list of lists, i do it this way (in my opinion no so fast):
>>
>> List<List<String>> finalList = new ArrayList<List<String>>();
>> Dataset<Row> df = spark.read().format("csv").option("header",
>> "true").load("/pathToCSV");
>> String[] columnNames = df.columns();
>> for (int i=0;i<columnNames.length;i++) {
>> List<String> columnList = new ArrayList<String>();
>>
>> columnList.add(columnNames[i]);
>>
>>
>> List<Row> columnValues =
>> df.filter(org.apache.spark.sql.functions.col(columnNames[i]).isNotNull()).select(columnNames[i]).distinct().collectAsList();
>> for (int j=0;j<columnValues.size();j++)
>> columnList.add(columnValues.get(j).apply(0).toString());
>>
>> finalList.add(columnList);
>>
>>
>> How to improve this?
>>
>> Also, can I get the results in JSON format?
>>
>> --
>> Apostolos N. Papadopoulos, Associate Professor
>> Department of Informatics
>> Aristotle University of Thessaloniki
>> Thessaloniki, GREECE
>> tel: ++0030312310991918
>> email: [email protected]
>> twitter: @papadopoulos_ap
>> web: http://datalab.csd.auth.gr/~apostol
>>
>>
>