Stage level scheduling does not allow you to change configs right now. This is 
something we thought about as follow on but have never implemented.  How many 
tasks on the DL stage are you running?  The typical case is run some etl lots 
of tasks... do mapPartitions and then run your DL stuff, before that 
mapPartitions you could do a repartition if necessary to get to exactly the 
number of tasks you want (20).  That way even if maxExecutors=500 you will only 
ever need 20 or whatever you repartition to and spark isn't going to ask for 
more then that.
Tom

    On Thursday, November 3, 2022 at 11:10:31 AM CDT, Shay Elbaz 
<shay.el...@gm.com> wrote:  
 
 #yiv8086956851 P {margin-top:0;margin-bottom:0;}Thanks again Artemis, I really 
appreciate it. I have watched the video but did not find an answer.
Please bear with me just one more iteration 🙂
Maybe I'll be more specific:Suppose I start the application with 
maxExecutors=500, executors.cores=2, because that's the amount of resources 
needed for the ETL part. But for the DL part I only need 20 GPUs. SLS API only 
allows to set the resources per executor/task, so Spark would (try to) allocate 
up to 500 GPUs, assuming I configure the profile with 1 GPU per executor. So, 
the question is how do I limit the stage resources to 20 GPUs total? 
Thanks again,Shay
From: Artemis User <arte...@dtechspace.com>
Sent: Thursday, November 3, 2022 5:23 PM
To: user@spark.apache.org <user@spark.apache.org>
Subject: [EXTERNAL] Re: Re: Stage level scheduling - lower the number of 
executors when using GPUs 


| 
ATTENTION: This email originated from outside of GM.
 |


  Shay,  You may find this video helpful (with some API code samples that you 
are looking for). https://www.youtube.com/watch?v=JNQu-226wUc&t=171s.  The 
issue here isn't how to limit the number of executors but to request for the 
right GPU-enabled executors dynamically.  Those executors used in pre-GPU 
stages should be returned back to resource managers with dynamic resource 
allocation enabled (and with the right DRA policies).  Hope this helps..

Unfortunately there isn't a lot of detailed docs for this topic since GPU 
acceleration is kind of new in Spark (not straightforward like in TF).   I wish 
the Spark doc team could provide more details in the next release...

On 11/3/22 2:37 AM, Shay Elbaz wrote:

#yiv8086956851 #yiv8086956851 --p {margin-top:0;margin-bottom:0;}#yiv8086956851 
Thanks Artemis. We are not using Rapids, but rather using GPUs through the 
Stage Level Scheduling feature with ResourceProfile. In Kubernetes you have to 
turn on shuffle tracking for dynamic allocation, anyhow.The question is how we 
can limit thenumber of executors when building a new ResourceProfile, directly 
(API) or indirectly (some advanced workaround).
Thanks,Shay 
From: Artemis User<arte...@dtechspace.com>
Sent: Thursday, November 3, 2022 1:16 AM
To: user@spark.apache.org <user@spark.apache.org>
Subject: [EXTERNAL] Re: Stage level scheduling - lower the number of executors 
when using GPUs 
| 
ATTENTION: This email originated from outside of GM.
 |


  Are you using Rapids for GPU support in Spark?  Couple of options you may 
want to try:
   
   - In addition to dynamic allocation turned on, you may also need to turn on 
external shuffling service.   

   - Sounds like you are using Kubernetes.  In that case, you may also need to 
turn on shuffle tracking.   

   - The "stages" are controlled by the APIs.  The APIs for dynamic resource 
request (change of stage) do exist, but only for RDDs (e.g. TaskResourceRequest 
and ExecutorResourceRequest).

On 11/2/22 11:30 AM, Shay Elbaz wrote:

#yiv8086956851 #yiv8086956851 --p {margin-top:0;margin-bottom:0;}#yiv8086956851 
Hi,
Our typical applications need lessexecutors for a GPU stage than for a CPU 
stage. We are using dynamic allocation with stage level scheduling, and Spark 
tries to maximize the number of executors also during the GPU stage, causing a 
bit of resources chaos in the cluster. This forces us to use a lower value for 
'maxExecutors' in the first place, at the cost of the CPU stages performance. 
Or try to solve this in the Kubernets scheduler level, which is not 
straightforward and doesn't feel like the right way to go.
Is there a way to effectively use less executors in Stage Level Scheduling? The 
API does not seem to include such an option, but maybe there is some more 
advanced workaround?
Thanks,Shay 

 






  

Reply via email to