Hi Clay,

Those parameters you are passing are not valid

pyspark --conf queue=default --conf executory-memory=24G

Python 3.7.3 (default, Apr  3 2021, 20:42:31)
[GCC 4.8.5 20150623 (Red Hat 4.8.5-39)] on linux
Type "help", "copyright", "credits" or "license" for more information.
Warning: Ignoring non-Spark config property: executory-memory
Warning: Ignoring non-Spark config property: queue
2021-05-19 22:28:20,521 WARN util.NativeCodeLoader: Unable to load
native-hadoop library for your platform... using builtin-java classes where
applicable
Setting default log level to "WARN".
To adjust logging level use sc.setLogLevel(newLevel). For SparkR, use
setLogLevel(newLevel).
Welcome to
      ____              __
     / __/__  ___ _____/ /__
    _\ \/ _ \/ _ `/ __/  '_/
   /__ / .__/\_,_/_/ /_/\_\   version 3.1.1
      /_/

Using Python version 3.7.3 (default, Apr  3 2021 20:42:31)
Spark context Web UI available at http://rhes75:4040
Spark context available as 'sc' (master = local[*], app id =
local-1621459701490).
SparkSession available as 'spark'.

Also

pyspark dynamic_ARRAY_generator_parquet.py

Running python applications through 'pyspark' is not supported as of Spark
2.0.
Use ./bin/spark-submit <python file>


This works

$SPARK_HOME/bin/spark-submit --master local[4]
dynamic_ARRAY_generator_parquet.py


See

 https://spark.apache.org/docs/latest/submitting-applications.html

HTH



   view my Linkedin profile
<https://www.linkedin.com/in/mich-talebzadeh-ph-d-5205b2/>



*Disclaimer:* Use it at your own risk. Any and all responsibility for any
loss, damage or destruction of data or any other property which may arise
from relying on this email's technical content is explicitly disclaimed.
The author will in no case be liable for any monetary damages arising from
such loss, damage or destruction.




On Wed, 19 May 2021 at 20:10, Clay McDonald <stuart.mcdon...@bateswhite.com>
wrote:

> Hello all,
>
>
>
> I’m hoping someone can give me some direction for troubleshooting this
> issue, I’m trying to write from Spark on an HortonWorks(Cloudera) HDP
> cluster. I ssh directly to the first datanode and run PySpark with the
> following command; however, it is always failing no matter what size I set
> memory in Yarn Containers and Yarn Queues. Any suggestions?
>
>
>
>
>
>
>
> pyspark --conf queue=default --conf executory-memory=24G
>
>
>
> --
>
>
>
> HDFS_RAW="/HDFS/Data/Test/Original/MyData_data/"
>
> #HDFS_OUT="/ HDFS/Data/Test/Processed/Convert_parquet/Output"
>
> HDFS_OUT="/tmp"
>
> ENCODING="utf-16"
>
>
>
> fileList1=[
>
> 'Test _2003.txt'
>
> ]
>
> from  pyspark.sql.functions import regexp_replace,col
>
> for f in fileList1:
>
>                 fname=f
>
>                 fname_noext=fname.split('.')[0]
>
>                 df =
> spark.read.option("delimiter","|").option("encoding",ENCODING).option("multiLine",True).option('wholeFile',"true").csv('{}/{}'.format(HDFS_RAW,fname),
> header=True)
>
>                 lastcol=df.columns[-1]
>
>                 print('showing {}'.format(fname))
>
>                 if ('\r' in lastcol):
>
>                                 lastcol=lastcol.replace('\r','')
>
>                                 df=df.withColumn(lastcol,
> regexp_replace(col("{}\r".format(lastcol)), "[\r]",
> "")).drop('{}\r'.format(lastcol))
>
>
> df.write.format('parquet').mode('overwrite').save("{}/{}".format(HDFS_OUT,fname_noext))
>
>
>
>
>
>
>
> Caused by: org.apache.spark.SparkException: Job aborted due to stage
> failure: Task 0 in stage 1.0 failed 4 times, most recent failure: Lost task
> 0.3 in stage 1.0 (TID 4, DataNode01.mydomain.com, executor 5):
> ExecutorLostFailure (executor 5 exited caused by one of the running tasks)
> Reason: Container marked as failed:
> container_e331_1621375512548_0021_01_000006 on host:
> DataNode01.mydomain.com. Exit status: 143. Diagnostics: [2021-05-19
> 18:09:06.392]Container killed on request. Exit code is 143
> [2021-05-19 18:09:06.413]Container exited with a non-zero exit code 143.
> [2021-05-19 18:09:06.414]Killed by external signal
>
>
>
>
>
> THANKS! CLAY
>
>
>

Reply via email to