Please see that driver side for example resolved in 3.1.0...

G


On Fri, Mar 12, 2021 at 1:03 PM Sachit Murarka <connectsac...@gmail.com>
wrote:

> Hi Gabor,
>
> Thanks a lot for the response. I am using Spark 3.0.1 and this is spark
> structured streaming.
>
> Kind Regards,
> Sachit Murarka
>
>
> On Fri, Mar 12, 2021 at 5:30 PM Gabor Somogyi <gabor.g.somo...@gmail.com>
> wrote:
>
>> Since you've not provided any version I guess you're using 2.x and you're
>> hitting this issue: https://issues.apache.org/jira/browse/SPARK-28367
>> The executor side must be resolved out of the box in the latest Spark
>> version however on driver side one must set "
>> spark.sql.streaming.kafka.useDeprecatedOffsetFetching=false" to use the
>> new way of fetching.
>>
>> If it doesn't solve your problem then Kafka side must be checked why it's
>> not returning...
>>
>> Hope this helps!
>>
>> G
>>
>>
>> On Fri, Mar 12, 2021 at 12:29 PM Sachit Murarka <connectsac...@gmail.com>
>> wrote:
>>
>>> Hi All,
>>>
>>> I am getting following error in spark structured streaming while
>>> connecting to Kakfa
>>>
>>> Main issue from logs::
>>> Caused by: org.apache.kafka.common.errors.TimeoutException: Timeout of
>>> 60000ms expired before the position for partition my-topic-1 could be
>>> determined
>>>
>>> Current Committed Offsets: {KafkaV2[Subscribe[my-topic]]:
>>> {“my-topic”:{“1":1498,“0”:1410}}}
>>> Current Available Offsets: {KafkaV2[Subscribe[my-topic]]:
>>> {“my-topic”:{“1”:1499,“0":1410}}}
>>>
>>>
>>> Full logs::
>>>
>>> 21/03/12 11:04:35 ERROR TaskSetManager: Task 0 in stage 0.0 failed 4
>>> times; aborting job
>>> 21/03/12 11:04:35 ERROR WriteToDataSourceV2Exec: Data source write
>>> support
>>> org.apache.spark.sql.execution.streaming.sources.MicroBatchWrite@1eff441c
>>> is aborting.
>>> 21/03/12 11:04:35 ERROR WriteToDataSourceV2Exec: Data source write
>>> support
>>> org.apache.spark.sql.execution.streaming.sources.MicroBatchWrite@1eff441c
>>> aborted.
>>> 21/03/12 11:04:35 ERROR MicroBatchExecution: Query [id =
>>> 2d788a3a-f0ee-4903-9679-0d13bc401e12, runId =
>>> 1b387c28-c8e3-4336-9c9f-57db16aa8132] terminated with error
>>> org.apache.spark.SparkException: Writing job aborted.
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:413)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2$(WriteToDataSourceV2Exec.scala:361)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.writeWithV2(WriteToDataSourceV2Exec.scala:322)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.WriteToDataSourceV2Exec.run(WriteToDataSourceV2Exec.scala:329)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result$lzycompute(V2CommandExec.scala:39)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.result(V2CommandExec.scala:39)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2CommandExec.executeCollect(V2CommandExec.scala:45)
>>> at org.apache.spark.sql.Dataset.collectFromPlan(Dataset.scala:3627)
>>> at org.apache.spark.sql.Dataset.$anonfun$collect$1(Dataset.scala:2940)
>>> at org.apache.spark.sql.Dataset.$anonfun$withAction$1(Dataset.scala:3618)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
>>> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
>>> at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3616)
>>> at org.apache.spark.sql.Dataset.collect(Dataset.scala:2940)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$16(MicroBatchExecution.scala:575)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$5(SQLExecution.scala:100)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:160)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.$anonfun$withNewExecutionId$1(SQLExecution.scala:87)
>>> at org.apache.spark.sql.SparkSession.withActive(SparkSession.scala:764)
>>> at
>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:64)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runBatch$15(MicroBatchExecution.scala:570)
>>> at
>>> org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:352)
>>> at
>>> org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:350)
>>> at
>>> org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:69)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.runBatch(MicroBatchExecution.scala:570)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$2(MicroBatchExecution.scala:223)
>>> at scala.runtime.java8.JFunction0$mcV$sp.apply(JFunction0$mcV$sp.java:23)
>>> at
>>> org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken(ProgressReporter.scala:352)
>>> at
>>> org.apache.spark.sql.execution.streaming.ProgressReporter.reportTimeTaken$(ProgressReporter.scala:350)
>>> at
>>> org.apache.spark.sql.execution.streaming.StreamExecution.reportTimeTaken(StreamExecution.scala:69)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.$anonfun$runActivatedStream$1(MicroBatchExecution.scala:191)
>>> at
>>> org.apache.spark.sql.execution.streaming.ProcessingTimeExecutor.execute(TriggerExecutor.scala:57)
>>> at
>>> org.apache.spark.sql.execution.streaming.MicroBatchExecution.runActivatedStream(MicroBatchExecution.scala:185)
>>> at org.apache.spark.sql.execution.streaming.StreamExecution.org
>>> $apache$spark$sql$execution$streaming$StreamExecution$$runStream(StreamExecution.scala:334)
>>> at
>>> org.apache.spark.sql.execution.streaming.StreamExecution$$anon$1.run(StreamExecution.scala:245)
>>> Caused by: org.apache.spark.SparkException: Job aborted due to stage
>>> failure: Task 0 in stage 0.0 failed 4 times, most recent failure: Lost task
>>> 0.3 in stage 0.0 (TID 3, 10.244.2.68, executor 1):
>>> org.apache.kafka.common.errors.TimeoutException: Timeout of 60000ms expired
>>> before the position for partition my-topic-1 could be determined
>>>
>>> Driver stacktrace:
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.failJobAndIndependentStages(DAGScheduler.scala:2059)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2(DAGScheduler.scala:2008)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.$anonfun$abortStage$2$adapted(DAGScheduler.scala:2007)
>>> at
>>> scala.collection.mutable.ResizableArray.foreach(ResizableArray.scala:62)
>>> at
>>> scala.collection.mutable.ResizableArray.foreach$(ResizableArray.scala:55)
>>> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:49)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:2007)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1(DAGScheduler.scala:973)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.$anonfun$handleTaskSetFailed$1$adapted(DAGScheduler.scala:973)
>>> at scala.Option.foreach(Option.scala:407)
>>> at
>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:973)
>>> at
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2239)
>>> at
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2188)
>>> at
>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2177)
>>> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
>>> at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:775)
>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2099)
>>> at
>>> org.apache.spark.sql.execution.datasources.v2.V2TableWriteExec.writeWithV2(WriteToDataSourceV2Exec.scala:382)
>>> ... 37 more
>>> Caused by: org.apache.kafka.common.errors.TimeoutException: Timeout of
>>> 60000ms expired before the position for partition my-topic-1 could be
>>> determined
>>>
>>> Current Committed Offsets: {KafkaV2[Subscribe[my-topic]]:
>>> {“my-topic”:{“1":1498,“0”:1410}}}
>>> Current Available Offsets: {KafkaV2[Subscribe[my-topic]]:
>>> {“my-topic”:{“1”:1499,“0":1410}}}
>>>
>>> Kind Regards,
>>> Sachit Murarka
>>>
>>

Reply via email to